Towards high-interaction virtual ICS honeypots-in-a-box

Honeypot Architecture

Abstract

In this work, we address the problem of designing and implementing honeypots for Industrial Control Systems (ICS). Honeypots are vulnerable systems that are set up with the intent to be probed and compromised by attackers. Analysis of those attacks then allows the defender to learn about novel attacks and general strategy of the attacker. Honeypots for ICS systems need to satisfy both traditional ICT requirements, such as cost and maintainability, and more specific ICS requirements, such as time and determinism. We propose the design of a virtual, high-interaction and server-based ICS honeypot to satisfy the requirements, and the deployment of a realistic, cost-effective, and maintainable ICS honeypot. An attacker model is introduced to complete the problem statement and requirements. Based on our design and the MiniCPS framework, we implemented a honeypot mimicking a water treatment testbed. To the best of our knowledge, the presented honeypot implementation is the first academic work targeting Ethernet/IP based ICS honeypots, the first ICS virtual honeypot that is high-interactive without the use of full virtualization technologies (such as a network of virtual machines), and the first ICS honeypot that can be managed with a Software-Defined Network (SDN) controller.

Publication
Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy (co-located with CCS)

This paper won the Research excellence award by ST Engineering during the FIRST workshop in 2017.

comments powered by Disqus