
Design, Implementation, and Evaluation of
Secure Cyber-Physical and Wireless

Systems

Submitted by

Daniele ANTONIOLI

Thesis Advisor

Dr. Nils Ole TIPPENHAUER (Asst. Prof. at SUTD until 07-2018)
Dr. Pawel SZALACHOWSKI

Information Systems Technology and Design (ISTD)

A thesis submitted to the Singapore University of Technology and Design in
fulfillment of the requirement for the degree of Doctor of Philosophy

2019

i

PhD Thesis Examination Committee
TEC Chair: Prof. Zhou Jianying
Main Advisor: Dr. Pawel Szalachowski
Co-advisor(s): Dr. Nils Ole Tippenhauer
Internal TEC member 1: Dr. Sudipta Chattopadhyay
Internal TEC member 2: Dr. Alexander Binder

Declaration
I hereby confirm the following:

• I hereby confirm that the thesis work is original and has not been submitted to
any other University or Institution for higher degree purposes.

• I hereby grant SUTD the permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium
now known or hereafter created in accordance with Policy on Intellectual Prop-
erty, clause 4.2.2.

• I have fulfilled all requirements as prescribed by the University and provided 1
copy of my thesis in PDF.

• I have attached all publications and award list related to the thesis (e.g. journal,
conference report and patent).

• The thesis does contain patentable or confidential information.

• I certify that the thesis has been checked for plagiarism via ithenticate. The score
49% where 43% are matches against my own research papers and the remaining
6% is mostly related to matching bibliographic entries.

Name and signature: Daniele Antonioli

Date: 02-Aug-2019

ii

Abstract
Information Systems Technology and Design (ISTD)

Doctor of Philosophy

Design, Implementation, and Evaluation of Secure Cyber-Physical and Wireless
Systems

by Daniele ANTONIOLI

iii

The first part of the dissertation presents our contributions in the area of cyber-
physical system security. CPS are composed or sensors, actuators and controllers, and
they are used to manage different processes such as industrial plants. Securing CPS
is an open challenge and attacks such as Stuxnet and TRITON have reiterated the im-
portance of securing CPS. In this work we focus on three (intertwined) problems to ad-
vance the security of CPS: technologies and processes, multi-disciplinary communities,
and threat models and incentives. To address these problems we present the design,
implementation, and evaluation of MiniCPS, an open-source toolkit for lightweight
and real-time simulation of CPS. MiniCPS is built on top of Mininet, a network em-
ulator based on Linux containers. We explore the usability of MiniCPS to develop
defense mechanisms for CPS, with a particular emphasis on honeypots. A honeypot
is a virtual or physical replica of a real system deployed to detect, mitigate and coun-
teract cyber attacks. We leverage MiniCPS to design, implement and evaluate a novel
high-interaction honeypot for industrial control systems. In addition, we test the effec-
tiveness of MiniCPS as an educational and experimentation tool to help cybersecurity
researchers and professionals. In particular, we used MiniCPS to design novel cyberse-
curity challenges based on real-time simulations of CPS. The challenges were proposed
in a gamified security competition that we designed called SWaT Security Showdown
(S3).

The second part of the dissertation presents our contributions in the area of wireless
systems security. Wireless systems are used to transmit (sensitive) information and to
manage and monitor systems remotely. In this work we focus on three problems to
advance the security of wireless systems: effectiveness of deployed physical layer fea-
tures as defense mechanisms, complexity and accessibility of wireless technologies, and
security evaluations of wireless protocols. Firstly, we present a comparison between
b/n/ac amendments of IEEE 802.11 (WLAN) where we theoretically estimate and em-
pirically measure that recent physical layer features, such as MIMO and beamforming,
could be used to mitigate passive eavesdropping attacks. These features are already
present in commercial devices and they are complementary to the other (upper-layer)
security mechanisms. Then, we present the first security analysis of Nearby Connec-
tions, an API for proximity-based services developed by Google. The API uses a com-
bination of Bluetooth and Wi-Fi, and it is included in all Android devices since version
4.0 and all Android Things devices. Our analysis uncovers the proprietary (security)
mechanisms of Nearby Connections and it is based on our reverse-engineering of its
implementation. We demonstrate attacks where we maliciously manipulate Nearby
Connections, and we extend the connection range to devices that are not nearby. Prior
to publication we disclosed our findings to Google and we suggested them effective
countermeasures. Finally, we describe how we found and exploited an architectural
vulnerability of Bluetooth BR/EDR. We show how an attacker can downgrade the en-
tropy any Bluetooth BR/EDR encryption key to 1 byte without being detected, and
brute force the low entropy key in real time. We call our attack the Key Negotiation
Of Bluetooth (KNOB) attack. We implement the attack and evaluate it on 21 Bluetooth
vulnerable devices and we recommended to the Bluetooth SIG effective countermea-
sures.

iv

Publications

• Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen. The KNOB is broken:
Exploiting Low Entropy in the Encryption Key Negotiation of Bluetooth BR/EDR. In
Proceedings of the USENIX Security Symposium 2019. https://francozappa.
github.io/publication/knob/paper.pdfRepository: https://github.
com/francozappa/knob

• Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen. Nearby Threats: Re-
versing, Analyzing, and Attacking Google’s ‘Nearby Connections’ on Android. In Pro-
ceedings of the Network and Distributed System Security Symposium (NDSS)
2019. https://francozappa.github.io/publication/rearby/paper.
pdf Repository: https://github.com/francozappa/rearby

• Daniele Antonioli, Sandra Siby, Nils Ole Tippenhauer. Practical Evaluation of Pas-
sive COTS Eavesdropping in 802.11b/n/ac WLAN. In Proceedings of the Cryptology
and Network Security (CANS) conference 2017. https://link.springer.
com/chapter/10.1007/978-3-030-02641-7_19

• Daniele Antonioli, Hamid Reza Ghaeini, Sridhar Adepu, Martin Ochoa, and Nils
Ole Tippenhauer. Gamifying ICS Security Training and Research: Design, Implemen-
tation, and Results of S3. In Proceedings of the Workshop on Cyber-Physical Sys-
tems Security and Privacy (co-located with CCS), November 2017 https://dl.
acm.org/citation.cfm?id=3140253 Repository: https://github.com/
scy-phy/minicps/tree/master/examples/s3-2017

• Daniele Antonioli, Anand Agrawal, and Nils Ole Tippenhauer. Towards High-
Interaction Virtual ICS Honeypots-in-a-box. In Proceedings of the Workshop on
Cyber-Physical Systems Security and Privacy (co-located with CCS), pages 13–22.
ACM, 2016. https://dl.acm.org/citation.cfm?id=2994493 Research
excellence award by ST Electronics FIRST workshop 2017

• Daniele Antonioli and Nils Ole Tippenhauer. MiniCPS: A toolkit for Security Re-
search on CPS Networks. In Proceedings of the Workshop on Cyber-Physical Systems-
Security and/or Privacy (co-located with CCS), pages 91–100. ACM, 2015. https:
//dl.acm.org/citation.cfm?id=2808715Repository: https://github.
com/scy-phy/minicps

https://francozappa.github.io/publication/knob/paper.pdf
https://francozappa.github.io/publication/knob/paper.pdf
https://github.com/francozappa/knob
https://github.com/francozappa/knob
https://francozappa.github.io/publication/rearby/paper.pdf
https://francozappa.github.io/publication/rearby/paper.pdf
https://github.com/francozappa/rearby
https://link.springer.com/chapter/10.1007/978-3-030-02641-7_19
https://link.springer.com/chapter/10.1007/978-3-030-02641-7_19
https://dl.acm.org/citation.cfm?id=3140253
https://dl.acm.org/citation.cfm?id=3140253
https://github.com/scy-phy/minicps/tree/master/examples/s3-2017
https://github.com/scy-phy/minicps/tree/master/examples/s3-2017
https://dl.acm.org/citation.cfm?id=2994493
https://dl.acm.org/citation.cfm?id=2808715
https://dl.acm.org/citation.cfm?id=2808715
https://github.com/scy-phy/minicps
https://github.com/scy-phy/minicps

v

Acknowledgements
I’d like to thank my former supervisor, Nils Ole Tippenhauer, for his guidance and

support during these years. I’m indebted to him for providing me the opportunity to
work as a research assistant, PhD student, and teaching assistant at the Singapore Uni-
versity of Technology and Design (SUTD) and at the Helmholtz Center for Information
Security (CISPA). Nils allowed me to independently explore exciting research direc-
tions that have gradually shaped my scientific interests. Nils did teach me how to do
research, write and review papers, and assist a teacher. Nils helped me to design and
implement elegant solutions to complex problems that resulted in significant research
contributions. Nils introduced me Kasper.

I’d like to express my gratitude to Kasper Rasmussen for his guidance and support
during the last part of my PhD. Kasper allowed me to work at the University of Oxford
as a researcher and teaching assistant. Kasper did teach me how to become an indepen-
dent researcher and provided me an excellent research topic, in line with my interests,
that resulted in high impact contributions. Kasper sharpened my skills as a reviewer,
writer and thinker. The role of Kasper in my PhD was pivotal.

I’d like to thank my current supervisor Pawel Szalachowski. Pawel was very help-
ful in the last part of my PhD because he allowed me to keep working with Nils and
Kasper overseas without any issue. I would like to express my gratitude to all the mem-
bers of my PhD thesis committee: Zhou Jianying, Pawel Szalachowski, Nils Ole Tip-
penhauer, Sudipta Chattopadhyay, and Alexander Binder. Their valuable comments
greatly contributed to improving the quality of this dissertation.

I’d also like to acknowledge several professors and collaborators that I met in this
journey. Srdjan Capkun introduced me Nils. Martin Ochoa introduced me to advanced
topics in system security. Tony Quek let me revisit wireless communications from
a different perspective. Nicholas, Pierre, Anand, John, Hamid, Sandra, Ahnaf, and
Giuseppe have been good collaborators and friends.

I would like to thank Aurora (Goizane), my girlfriend, for her love, and patience
during my PhD. I thank my family for their support. I’d like to thank Paolo (PVag)
that was instrumental in my academic decisions, Alessandro (K=D) a loyal friend who
is available during good and bad times, and Daniel, Ragav, Francesco, Giovanni, Gior-
gio, Elena, Stefano, and Adit that helped me with many things in Singapore. I’d like
to extend my gratitude to the many friends that I found in Singapore, Oxford, and
Saarbrücken.

vi

Contents

Abstract iii

Publications iv

Acknowledgements v

Contents vi

I Cyber-physical systems security 1

1 Introduction to Cyber-Physical Systems Security 2
1.1 Problem Statement . 2
1.2 Our Vision, Research Directions and Questions 5
1.3 Cyber-Physical Systems Security Contributions 6

2 MiniCPS: A toolkit for security research on CPS networks 8
2.1 Introduction . 8
2.2 CPS Networks and Mininet . 9
2.3 MiniCPS . 12
2.4 Example Application: MitM traffic manipulations 16
2.5 Example Application: SDN . 19
2.6 Related work . 22
2.7 Conclusion . 23

3 Towards high-interaction virtual ICS honeypots-in-a-box 25
3.1 Introduction . 25
3.2 Background . 26
3.3 High-Interaction, Virtual ICS Honeypot Design 30
3.4 Honeypot Implementation with MiniCPS 34
3.5 Evaluation . 38
3.6 Related work . 43
3.7 Conclusion . 45

4 Gamifying ICS Security Training and Research: Design, Implementation, and
Results of S3 46
4.1 Introduction . 46
4.2 Background . 47
4.3 Gamifying Education and Research on ICS Security 49
4.4 Online phase of S3 . 53

vii

4.5 Live phase of S3 . 58
4.6 Related work . 64
4.7 Conclusions . 65

5 Conclusion about Cyber-Physical Systems Security 66
5.1 Lessons Learnt . 67
5.2 Future Work . 67

II Wireless systems security 68

6 Introduction to Wireless Systems Security 69
6.1 Problem Statement . 69
6.2 Our Vision, Research Directions and Questions 71
6.3 Wireless Systems Security Contributions 72

7 Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN 74
7.1 Introduction . 74
7.2 Background . 75
7.3 Passive 802.11 Downlink Eavesdropping 77
7.4 Experimental Validation . 84
7.5 Related Work . 90
7.6 Conclusions . 91

8 Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Con-
nections’ on Android 93
8.1 Introduction . 93
8.2 Background . 95
8.3 Reversing and Analyzing Nearby Connections 97
8.4 Attacking Nearby Connections . 107
8.5 REarby Toolkit Implementation . 111
8.6 Related Work . 116
8.7 Conclusion . 118

9 The KNOB is broken: Exploiting Low Entropy in the Encryption Key Negoti-
ation of Bluetooth BR/EDR 119
9.1 Introduction . 119
9.2 Background . 121
9.3 Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth

BR/EDR . 122
9.4 Implementation . 129
9.5 Evaluation . 135
9.6 Discussion . 138
9.7 Related Work . 140
9.8 Conclusion . 141

viii

10 Conclusion about Wireless Systems Security 142
10.1 Lessons Learnt . 143
10.2 Future Work . 143

Bibliography 144

ix

List of Figures

2.1 Local network topology of a plant network 11
2.2 MiniCPS layered block diagram . 14
2.3 Normal Control Message Flow in a CPS 16
2.4 MitM Attacker Manipulates Messages . 18
2.5 MitM Attacker Control Message Flow . 18
2.6 ICS network extension with an SDN Controller 21
2.7 ARP Spoofing Prevention Flowchart . 22

3.1 Local network topology of a plant . 28
3.2 High-interaction Virtual ICS Honeypot vs. Real ICS 33
3.3 ICS Honeypot Implementation Block Scheme 35

4.1 The Secure Water Treatment (SWaT) testbed architecture. 48
4.2 Popular CTFs . 51
4.3 S3 online challenges’ web page . 55
4.4 MiniCPS-based setup for online challenges 55
4.5 The HAMIDS framework . 62

7.1 802.11b SISO vs. 802.11 n/ac MISO passive eavesdropping 79
7.2 Numerical analysis setup . 82
7.3 802.11n Model B (Residential) expected BER 83
7.4 802.11n Model B (Residential) expected PER 84
7.5 802.11n Model D (office) BER/PER . 85
7.6 802.11n Model E (large office) BER/PER 85
7.7 Free Space Path Loss (LOS) BER/PER . 86
7.8 Office layout . 86
7.9 Eve’s PER vs. Model D predicted PER . 87
7.10 Eve’s measured SNR with respect to dAE 89
7.11 Experimental results from Section 7.4.3 (a) and Section 7.4.5 (b). 91

8.1 The Nearby Connections API . 96
8.2 Nearby Connections connection strategies 96
8.3 Nearby Connections Request . 98
8.4 Nearby Connections Key Exchange Protocol (KEP) 100
8.5 Computation of the authentication token. 102
8.6 Computation of kD2A and kA2D. 103
8.7 Computation of the AES (symmetric) key. 104
8.8 Computation of the MAC key and the MAC. 104
8.9 Nearby Connections Encrypted Keep-Alive 105
8.10 Soft Access Point manipulation attack . 108

x

9.1 High level stages of a KNOB attack. 123
9.2 Generation and usage of Bluetooth encryption key 124
9.3 Alice and Bob negotiate 1 byte of entropy 125
9.4 The KNOB attack message sequence chart 126
9.5 Transmission and reception of an E0 encrypted payload 131
9.6 Implementation of the KNOB attack on the E0 cipher 134
9.7 Bluetooth defines H a custom hash function based on SAFER+ 135

xi

List of Tables

3.1 CTF Results Summary. 41
3.2 Honeypot metrics evaluation summary. 42
3.3 Our Honeypot Features vs. Related Works. 43

4.1 SWaT Security Showdown Online Challenges 54
4.2 SWaT Security Showdown Online Results 58
4.3 SWaT Security Showdown Live Results 62
4.4 SWaT Security Showdown Live Attacks and Detections 63

7.1 802.11b/n/ac physical layer specifications 77
7.2 SNR and BER of SISO and MISO schemes 81
7.3 Parameters used for the experiments. 85
7.4 Results from 802.11n/ac experiments . 88
7.5 Eve’s PER vs. PER Thresholds vs. Distance 90

8.1 Main fields of Nearby Connections KEP 101
8.2 Scapy dissection classes . 116
8.3 Security related classes and methods used by ncproc. 117
8.4 Devices used in our Nearby Connections experiments and attacks 117

9.1 Twenty K ′C used by E0 and AES-CCM when N = 1 128
9.2 Technical specification of Nexus 5 and Motorola G3 130
9.3 Public and secret values during a KNOB attack 136
9.4 Bluetooth chips and devices tested against the KNOB attack 137

xii

To the ones I love.
Ai miei cari.

1

Part I

Cyber-physical systems security

2

Chapter 1

Introduction to Cyber-Physical
Systems Security

1.1 Problem Statement

Cyber-Physical Systems (CPS) are composed of heterogeneous devices that control and
monitor a physical process and talk to each other over a network. Control devices, such
as Programmable Logic Controller (PLC) and Remote Terminal Unit (RTU), are pro-
grammed to periodically query sensors to read values from the physical process, and
drive actuators to alter the state of the physical process. CPS are managing a variety of
physical processes including critical infrastructures. Attacks on CPS can cause severe
damages to the people and the environment. Securing CPS is still an open problem for
various reasons. In this thesis we focus on three (intertwined) problems to advance the
security of cyber-physical system:

1. Technologies and processes

2. Multi-disciplinary communities

3. Threat models and incentives

1.1.1 Technologies and processes

CPS technologies are complex to manage. A CPS composed of expensive, heterogeneous,
and interconnected components that are designed for high availability. CPS’s equip-
ment has to reliably work for a long time span (e. g. years and sometimes decades) and
it is subject to minimal upgrades. That said, introducing new equipment almost always
result in inter-operability problems with already deployed legacy systems. Legacy sys-
tems have a slow phase out, they are difficult to patch and expensive to replace. The
CPS market is dominated by the private sector, meaning that different functionalities
might be implemented by different (competing) vendors. A typical outcome of this
complexity is over-engineering, where a CPS is designed to provide more functionali-
ties than needed resulting in a system that is more difficult to secure [182].

Physical processes are diverse and hard to model. Industrial control systems, self-driving
cars, and building automation systems can be considered classes of CPS. Each class
of CPS has subclasses. For example an industrial control system (ICS) controls and
monitors an industrial application. If the underlying industrial application (physical
process) is considered of vital importance we can label the ICS as a critical infrastruc-
ture (subclass of ICS). Water treatment, water distribution and power grid facilities are

Chapter 1. Introduction to Cyber-Physical Systems Security 3

examples of critical infrastructures. Each CPS subclass has its own set of unique chal-
lenges that have to be well understood first, and then secured. For example a water
distribution system has generation/extraction, transmission/distribution and storage
phases and each phase has unique associated threats [182].

Cyber-physical and IT systems are converging. Cyber-Physical Systems were used to be
developed by and for trained engineers using custom (and often proprietary) devices,
software, and protocols. In the last decade we have seen a convergence between the
Information Technology (IT) space and the Operational Technology (OT) space. The IT
space used to be confined to business and consumer electronics and the OT to indus-
trial applications. This convergence resulted in the development of OT hardware and
software that is able to communicate with the IT world. For example, control devices
resemble general-purpose computers and industrial protocols have been adapted or re-
designed to be compatible with Internet technologies [63]. Industrial Internet of Things
(IIoT) and Industry 4.0 are the perfect incarnation of this new trend where industrial de-
vices such as PLC, RTU, Supervisory Control and Data Acquisition (SCADA), Human-
machine interface (HMI), sensors and actuators are reachable (and attackable) over the
Internet.

1.1.2 Multi-disciplinary communities

CPS communities are diverse. The diversity of Cyber-Physical System results in an huge
number of professionals working on them such as engineers, researchers and policy
makers from different technical disciplines. It is notoriously hard to put in the same
room groups of people with different technical backgrounds and let them agree on
something. That is why we have (even within the same CPS domain) different techni-
cal languages, regulating bodies, stakeholder interests, specification formats, program-
ming methodologies, hardware architectures to mention a few. Hence, it is almost
infeasible for a single professional to acquire all the skills to deal with a Cyber-Physical
System. Delegation and shared liability are the typical solutions. This problem is am-
plified in a security context where even the mismanagement of a minimal detail might
result in catastrophic consequences.

CPS communities are fragmented. Fragmentation creates silos in the research commu-
nity, opposed to an holistic and inclusive research approach. We need to find a way to
let CPS (security) experts talk more often and more constructively. In our experience
most of the hard technical challenges are already solved by the relevant technical com-
munity. Unfortunately, the best solution does not always reach other technical commu-
nities for various reasons such as patents, marketing, miscommunication, and laziness.
As a direct result of this problem we have seen frequent usage of sub-optimal solu-
tions to (already solved) technical problems e. g. custom broken crypto, custom useless
authentication, poor network segmentation.

CPS regulations are not effective. Effective security policies and standards are one
step in the right direction, however the diversity and complexity of cyber-physical sys-
tems bite again. Typically safety and process regulations, such as IEC61508, are done
vertically by sector e. g. electricity vs. water. Cyber-security regulations, such as NIST
SP800, are horizontal (cross-sectoral) e. g. cryptography. A CPS defender has to “muster
and master” multiple standards affecting the same system from different perspectives.
These perspectives might even conflict with each other: one standard could say: “for

Chapter 1. Introduction to Cyber-Physical Systems Security 4

better performance please use X” but another one says: “for security reasons please do
not use X”. In our experience CPS regulations are used mostly for compliance, leading
to a (checkbox-style) false impression of security. We believe that this is an ineffective
way to address CPS security.

1.1.3 Threat models and incentives

CPS were not designed after a threat model. Threat (attacker) modeling is the key part of
any security assessment. Saying that something is secure does not make any sense if it
is not stated in a specific threat model. Without a threat model is it impossible to spec-
ify and claim any security guarantee. Unfortunately, CPS were not designed after a
threat model but for safety. At this time of writing there are no standard threat models
for CPS. What is said is that the sophistication of a CPS attack is related to the attacker
knowledge of the target physical process. However the relation is neither quantified
not directly measurable. Another approach to CPS threat modeling is to re-use IT se-
curity concepts such as the CIA model 1 and Dolev-Yao [50]. For example, the CIA
model for CPS involves ignoring authentication and turning around the importance of
its metrics. That is, availability first, then integrity and finally confidentiality, but it is
still not clear if it is a good idea or not.

The attacker surface of a CPS is hard to confine, segment and model. Typically, we decom-
pose the CPS attacker surface in two intersecting surfaces: cyber and physical. A cyber
attack involves software and hardware vulnerabilities of the CPS equipment (includ-
ing the network). A physical attack involves physical tampering of the CPS equipment
(including sensors and actuators). A cyber-physical attack uses vulnerability in the cy-
ber part to cause damages in the physical world. The Aurora Generator Test [195] is an
example of cyber-physical attack dating back to 2007 where researchers from Idaho Na-
tional Laboratories showed how to destroy a diesel generator’s circuit breaker using a
computer program. We can even think of a physical-cyber attack where tampering with
the physical process triggers a vulnerability in the IT side. This rich attacker surface is
problematic during threat modeling. As defenders we have to specify from whom
we want to protect, however if we select a surface that is too narrow we might end
up with a limited defense mechanism e. g. focus only on network monitoring. On the
other hand, a too broad attacker surface might result in impractical (often theoretically
secure) defenses. To complicate even further the situation CPS are subject to cascading
attacks where the attack surface is not limited to the target CPS but it is extended to the
system directly connected to the target CPS e. g. attacking electricity distribution might
disrupt water treatment because of a power outage. Cascading attacks still not well
understood and modeled because they are difficult (and dangerous) to reproduce in a
controlled environment.

CPS attackers’ incentives are expanding. As said, the services provided by cyber-
physical systems are essential to our society e. g. distribution of water and electricity,
and CPS and IT system technologies are converging. This fact has severe consequences
on CPS security. Firstly, CPS are becoming appealing to any type of attacker, from the
script-kiddie to state-sponsored villains. Secondly, the attacker (malicious actor) can
assume any role: competitor, insider, supplier, user, consultant, and unknown party.

1The CIA model uses confidentiality, integrity, and availability as his main metrics.

Chapter 1. Introduction to Cyber-Physical Systems Security 5

Thirdly, the attack might be highly targeted to a single system or launched to a wide
range of systems. These are hard problems to be solved by CPS security researchers.
Recent high-impact CPS attacks confirm this trend, here we list five of them in a time-
line:

• 2003: Ohio’s nuclear facilities (Slammer worm) [144]
• 2007: Maroochy’s water breach [163]
• 2010: Iran’s nuclear facilities (Stuxnet) [59]
• 2015: Ukraine’s power grid [32]
• 2017: Middle East’s safety instrumented systems (TRISIS) [89]

1.2 Our Vision, Research Directions and Questions

In the previous section we explained what are the main problems related to securing
cyber-physical systems. In this section we present our “vision” and the related research
directions and questions to be answered to reach our goals.

We believe that enabling realistic low-cost simulations of Cyber-Physical Systems is a step-
ping stone to help solving the problems presented in Section 1.1. By realistic we mean a sim-
ulation environment that takes into account all the constituent part of a CPS, namely:
the control devices, the physical process and the network. By low-cost we mean that the
users of our simulations could run them in their machines, have free access to its source
code, documentation, and user guides. We envision short and long term benefits for
researcher and professionals deriving from the possibility to accurately simulate a CPS.
Some examples: decreasing the costs and the risks associated with CPS security exper-
iments, encouraging sharing of data, models and (reproducible) results, and allowing
to fast-prototyping and testing of new (security) solutions. A shared and open simu-
lation platform would also help cross-sectoral collaborations between (and not limited
to) public and private sectors, and it will lower the entry barrier to newcomers.

We admit that realistically simulating the behaviours of interconnected control de-
vices and the physical process is challenging. Nevertheless, we think that even pro-
viding the basic building blocks in the short-term is beneficial for the long-term vision.
In other words, we believe that once a minimum viable product is available (e. g. the
CPS simulator) then if many people will use it we can benefit from the knowledge of
the inter-disciplinary CPS communities to improve it. We know that many simulators
already exists as open-source project and (expensive) closed-source products. Our goal
is to be inclusive and provide a playground where different tools and programming
languages can coexist. As an analogy: we don’t want to reinvent the wheel, we want
to enable a scientist to use different types of already developed wheels and engines in
different contexts.

In this thesis we focus our attention on industrial control system, a subset of the whole
Cyber-Physical System domain. Our decision has two main reasons the first is practical
and the second is ideological. Firstly, Singapore University of Technology and Design
(our institution) has three state-of-the-art interconnected ICS testbeds (water distribu-
tion, water treatment, and power grid). This is a privilege for us because we are able to
validate our progresses comparing simulated results with expected ones. Secondly, we
believe that industrial control system is the most interesting subset of cyber-physical

Chapter 1. Introduction to Cyber-Physical Systems Security 6

systems because it includes critical physical processes, unique devices software and
protocols from the OT space, and standard equipment from the IT space.

Given the aforementioned research directions, the thesis aims to answer the follow-
ing research questions:

• How could we design an open and extensible simulation toolkit for reproducible
CPS security research?

– What is the best way to simulate control devices, physical processes, net-
works and their interactions?

– Is it necessary to develop new simulation and emulation environments?
– Is it possible to do it in real-time?
– Can we simulate multiple systems at the same time?

• Could we use our simulations to develop novel cyber-physical defenses?
– Shall we focus on prevention or detection?
– Could we take advantage of the low-cost and real-time aspects of our simu-

lations?
– Does it make sense to improve known defense mechanisms for the OT con-

text such as Software-Defined Networking (SDN) and honeypots?
• Could we use our simulations for cyber-physical education and training pur-

poses?
– What is the best way to raise awareness and educate people about CPS (se-

curity)?
– Shall we focus on applied or theoretical security?
– Shall we design a targeted competition? If yes, who are the competitors?

How can we effectively judge them?
• Could we use our simulations to develop novel cyber-physical attacks?

– What are interesting goals enabled by the current CPS security landscape
– Could we take advantage of the low-cost and real-time aspects of our simu-

lations?
– Does it make sense to improve known attack mechanisms for the OT context

such as botnets?

1.3 Cyber-Physical Systems Security Contributions

The first part of the thesis makes contributions in the area of cyber-physical systems
security, with results published in refereed venues. The contributions about wireless
systems security are presented in Section 6.3.

• Chapter 2 presents MiniCPS a toolkit for Cyber-Physical System simulations build
on top of mininet [6]. MiniCPS aims to provide an extensible, reproducible re-
search environment for cyber-physical system. MiniCPS interfaces mininet (a
network emulator) with with physical process and control device simulation and
potentially actual CPS hardware. It provides a public API to program basic CPS
interactions: send, receive, get and set. MiniCPS is open-source and a sim-
ulation can run on a single laptop with a Linux-based OS. Chapter 2 appeared
in Proceedings of the ACM Workshop on Cyber-Physical Systems-Security and
Privacy (CPS-SPC) 2015 [10].

Chapter 1. Introduction to Cyber-Physical Systems Security 7

• Chapter 3 presents the design and implementation of an honeypot for industrial
control systems based on MiniCPS. Honeypots for ICS systems need to satisfy
both traditional ICT requirements, such as cost and maintainability, and more
specific ICS requirements, such as time and determinism. We propose the de-
sign of a virtual, high-interaction and server-based ICS honeypot to satisfy the
requirements. The presented honeypot implementation is the first academic work
targeting Ethernet/IP based ICS honeypots, the first ICS virtual honeypot that is
high-interactive without the use of full virtualization technologies (such as a net-
work of virtual machines), and the first ICS honeypot that can be managed with
a Software-Defined Network (SDN) controller. To validate our idea we present
an implementation of an honeypot mimicking a water treatment testbed. Chap-
ter 3 appeared in Proceedings of the ACM Workshop on Cyber-Physical Systems-
Security and Privacy (CPS-SPC) 2016 [7].

• Chapter 4 considers the challenges related to education and research about the
security of industrial control systems (ICS). We propose to address those chal-
lenges through gamified security competitions targeted to researchers and pro-
fessionals. Our gamification idea resulted in the design and implementation of
the SWaT Security Showdown (S3), a Capture-The-Flag (CTF) event specifically
targeted at ICS security. We developed ICS-specific challenges involving both
theoretical and applied ICS security concepts. The participants had access to a
real water treatment facility and they interacted with simulated components and
ICS honeypots based on MiniCPS. We describe the phases of the S3, the scoring
system. We present the results, statistics and lessons learnt from the S3 com-
petition ran in 2016 and 2017 involving international teams from industry and
academia. Chapter 4 appeared in Proceedings of the ACM Workshop on Cyber-
Physical Systems-Security and Privacy (CPS-SPC) 2017 [13].

• In addition to the main contributions presented there are three research papers
where the candidate is the main author or co-author that are related to this disser-
tation. In [8] we propose CPSBot, a framework to design and implement botnets
to attack cyber-physical systems. In [33] we propose an authentication mech-
anisms for legacy (unsecure) industrial protocols based on lightweight crypto-
graphic primitives, the paper appeared in Proceedings of the Conference on Ap-
plied Cryptography and Network Security (ACNS) 2017. In [64] we present an
anomaly detection mechanism for industrial control systems that takes advan-
tage of the state of the physical process, the paper appeared in Proceedings of
Symposium on Applied Computing (SAC) 2018.

• Chapter 5 concludes the first part of this dissertation, summarizing our contribu-
tions, lessons learnt, and future works.

8

Chapter 2

MiniCPS: A toolkit for security
research on CPS networks

Keywords: CPS, Mininet, Simulation, Emulation, Containers, SDN.

2.1 Introduction

Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA)
systems traditionally rely on communication technology such as RS-232 and RS-485,
and field buses such as PROFIBUS [63]. Due to the long lifetime of industrial compo-
nents in such settings, transitions to technology such as Ethernet, TCP/IP, and related
protocols are often only implemented now. The adoption to the standard Internet pro-
tocol suite is expected to enhance interoperability of the equipment, and reduce overall
communication costs.

The growing connectivity is also expected to introduce novel security threats, in
particular when systems are communicating over public networks such as the Internet.
While a great amount of research has been conducted on network security of office and
home networks, recently the security of CPS and related systems has gained a lot of
attention [34, 108, 182, 196, 197]. In CPS, physical-layer interactions between compo-
nents have to be considered as potential attack vectors, in addition to the conventional
network-based attacks. Examples for real-world CPS are unfortunately often not open
to security researchers, and as a result few reference systems (i. e., physical process
description, control systems, network topologies) are available. In addition, physical
layer interactions between components need to be considered besides network com-
munications. We believe that this will require novel simulation environments, that are
specifically adapted to cater for the requirements of CPS and ICS. In particular, such
environments could be used to co-simulate (in real-time) using different simulated and
emulated components together with real hardware or processes.

In this work, we present MiniCPS, a toolkit intended to alleviate this problem. The
goal of MiniCPS is to create an extensible, reproducible research environment targeted
towards CPS. MiniCPS will allow researchers to emulate the Ethernet-based network of
an industrial control system, together with simulations of components such as PLCs. In
addition, MiniCPS supports a basic API to capture physical layer interactions between
components. Based on MiniCPS, it is possible to replicate ICS in real-time, for example
to develop novel intrusion prevention systems, or own software to interact with indus-
trial protocols. While not all CPS systems are using Ethernet-based communication so

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 9

far, we see a general trend towards wide adoption of Ethernet as physical layer for the
communication [63].

MiniCPS can also be used to share different system setup, and can be extended by
standard Linux tools or projects. Due to our use of Mininet for the network emulation
part, MiniCPS is also well suited to perform research on Software-Defined Networking
in the context of Industrial Control Systems.

We summarize our contributions as following:
• We identify the issue of missing generic simulation environments for applica-

tions such as cyber-physical systems. In particular, such simulation environments
should support physical interactions, parametric communication links, and spe-
cific industrial (ideally all) protocols that are used.

• We present MiniCPS, a framework built on top of Mininet, to provide such a
simulation environment.

• We present an example application cases in which we use MiniCPS to develop
and refine a specific attack, which we later validated in a real testbed.

• We propose the use of Software-Defined Networking for CPS networks to enable
efficient detection and prevention of the attack presented earlier. We design and
implement a matching SDN controller, and validate it in MiniCPS.

The structure of this work is as follows: In Section 2.2, we introduce Mininet and
CPS networks in general. We propose our MiniCPS framework in Section 2.3, and pro-
vide an application example in Section 2.4. In Section 2.5, we show how MiniCPS can
be used to develop a CPS network specific SDN controller. Related work is summa-
rized in Section 2.6. We conclude the chapter in Section 2.7.

2.2 CPS Networks and Mininet

In this section, we will introduce some of the salient properties of industrial control
system (ICS) networks that we have found so far. In addition, we will briefly introduce
Mininet, the network simulation tool we use as part of MiniCPS.

2.2.1 ICS networks

In the context of this work, we consider ICS that are used to supervise and control
system like public infrastructure (water, power), manufacturing lines, or public trans-
portation systems. In particular, we assume the system consists of programmable logic
controllers, sensors, actuators, and supervisory components such as human-machine
interfaces and servers. We focus on single-site systems with local connections, long
distance connections would in addition require components such as remote terminal
units (see below). All these components are connected through a common network
topology.
Programmable logic controllers. PLCs are directly controlling parts of the system by
aggregating sensor readings, and following their control logic to produce commands
for connected actuators.
Sensors and actuators. Those components interact with the physical layer, and are
directly connected to the Ethernet network (or indirectly via remote input/output units
(IOs) or PLCs).

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 10

Network Devices. ICS often use gateway devices to translate between different indus-
trial protocols (e. g. Modbus/TCP and Modbus/RTU) or communication media. In the
case where these gateways connect to a WAN, they are usually called remote terminal
units (RTUs).
Network Topology. Traditionally, industrial control systems have seen a wide deploy-
ment of direct links between components, based on communication standards like RS-
232. In addition, bus systems such as RS-485 and PROFIBUS have been used. In par-
ticular, focus on reliability led to a deployment of topologies such as rings [40], which
could tolerate failure of a single component without loss of communications, with very
low reaction time (typically in the order of milliseconds).
Industrial protocols. In recent years, industrial networks are transitioning to main-
stream consumer networking technology i. e. Ethernet (IEEE 802.3), IP, TCP. Never-
theless, the need for reliability and interoperability with existing equipment leads to
systems that are different from typical home and office networks, such as Ethernet
rings, use of IP-layer multi-casting, and custom protocols such as the EtherNet/IP
(ENIP) [129]. ENIP is a Real Time Ethernet (RTE) field bus based on TCP/IP with a
custom application layer designed to meet typical industrial communications require-
ments like real-time response and packet determinism. Technically ENIP is an Ethernet
based implementation of the Common Industrial Protocol (CIP) and it is defined in the
IEC 61784-1 standard [63]. CIP messages can be used to query sensor readings from
components, set configuration options, or even download new logic on a PLC. In that
model, sensor readings or control values are represented by tags. CIP uses a request-
response model where a client sends a request to a server (for example to read a tag
containing a value read from a hardware component) and where the server then sends
back a reply (e. g. with the requested value or an error code). Such requests can operate
on tags and also on the meta-data associated with the tag, like access control and data
type, which are stored in attributes. ENIP handles the selected aspects of the communi-
cation, for example with connected sessions (with handshake and tear-down messages)
and unconnected sessions (without any handshake but with more contextual data in
every CIP packet).
Topology layers. Networks for industrial control systems are often grouped in several
layers or zones (more detail on such networks in [124, 142]). On the lowest layer (which
we call layer 0 or L0), sensors and actuators are connected to controllers such as PLC.
The sensors and actuators are either capable of connecting to a network directly (e. g.
using ENIP), or they use basic analog or digital signaling, which has to be converted to
Ethernet-based communications by remote input/output (RIO) devices. Only if actuators
and sensors are physically very close to the PLC, the IO modules will be installed as
part of the PLC.

The next higher layer (layer 1/ L1) will connect the different controllers (PLCs) with
each other, together with local control such as Human-Machine-Interfaces (HMI), local
engineering workstations, and Data historians. For simplicity, all these devices are
often kept in the same IP-layer sub-network, although more complex topologies are
possible. We also note that industrial Ethernet switches are often focused on electrical
reliability, instead of IP-layer functionality (e.g. the Rockwell Automation Stratix 5900
switch). We provide the network topology of a generic ICS network as an example in
Figure 3.1.

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 11

L1 Network

HMI

Switch

HMI

SCADA Historian

Remote IO

PLC1a PLC1b

PLCPLC

L0 Network

Sensor

42.42

Sensors

RIO

Process 1

Remote IO

PLCPLC

L0 Network

RIO

Process 2

Remote IO

PLCPLC

L0 Network

RIO

Process n

...

Actuators

Sensor

42.42

SensorsActuators

Sensor

42.42

SensorsActuators

...

PLC2a PLC2b PLCna PLCnb

HMI

FIGURE 2.1: Example local network topology of a plant control network.

2.2.2 Mininet

Mininet [105] is a network emulator that allows to emulate a collection of end-hosts,
switches, routers, middle boxes, and links with high level of fidelity. It enables rapid
testing and prototyping of large network setups on constrained resources, such as a
laptop. Furthermore, it was build around the Software-Defined Networking paradigm,
facilitating SDN research and development [131].

Mininet exploits lightweight system virtualization using Linux containers. This ap-
proach presents various advantages over a full system virtualization: Mininet runs on
a single kernel, its computational overhead is lower and the emulator can easily toler-
ate scalability issues (e. g. one thousand containers vs. one thousand dedicated virtual
machines).

Each virtual host is a collection of processes isolated into a container. A virtual
network namespace is attached to each container and it provides a dedicated virtual in-
terface and private network data. Link are emulated using virtual Ethernet (veth) and
they can be shaped through Linux Traffic Control (tc) to emulate link performance
such as delay, loss rate and bandwidth. Each virtual host utilizes its virtual interface to
communicate with other network devices.

Mininet can be used in multiple scenarios and can be easily adapted over time to
track the evolution of CPS networks. It provides a realistic emulation environment to
the user, and one can work with the same addresses, protocol stacks and network tools
of a physical network, it is even possible to reuse helper scripts and configuration files
from the emulated environment directly in the physical network.

Mininet ships with a set of common topologies, in addition the user can easily ex-
tend this collection through the provided public Python APIs. Dynamic interaction
within any chosen topology can be achieved through a convenient command line in-
terface. Mininet is free, open-source, well documented and actively maintained by a

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 12

strong and competent community. Furthermore, Mininet gives the user the opportu-
nity to develop OpenFlow network architectures with direct integration of experimen-
tal code into production code.

2.3 MiniCPS

In this section, we present our proposed toolkit MiniCPS. MiniCPS combines a set of
tools for real-time emulation of network traffic with CPS component simulation scripts,
and a simple API to interface with real-time physical-layer simulations. The combined
system will allow a) researchers to build, investigate, and exchange ICS networks, b)
network engineers to experiment with planned topologies and setups, and c) security
experts to test exploits and countermeasures in realistic virtualized environments.

In MiniCPS, components such as PLCs are represented by Python scripts that man-
age the decoding of industrial protocols and physical layer sensor and actuator signals.
All network components (e. g. switches) are emulated using Mininet (as introduced in
Section 2.2.2). Physical layer interactions are currently connected to suitable simula-
tion software through a simple API (based on shared read/write to files). MiniCPS
itself does not focus on providing physical process simulations – it rather connects
components to their counterparts, and process simulation engines.

2.3.1 Goals of MiniCPS

In the following, we provide a discussion of our vision behind MiniCPS, in particular
related to its focus on network emulation, overall simulation, and real-time properties.
We also discuss co-simulation with real devices, integration of physical-layer simula-
tion tools, and integration of software defined networking.
Network Emulation. MiniCPS focuses on high-fidelity network emulation, which al-
lows simulated components to exchange very similar or the same traffic as seen in
the real network, from Ethernet layer up to the application layer (based on Mininet,
see Section 2.2.2). In particular, we aim to not only provide an abstraction of the
network to perform simulations on (similar to network simulators such as NS2 [92],
OMNet++ [179]), but we target a network emulation that is largely identical to a real
network, without the cost or overhead of running a real network or a set of virtual
machines. In particular, this would allow us to develop components that are directly
using industrial protocols to communicate.
Simulation vs Emulation. We recognize that the difference between emulation and
simulation might not be universally defined. In the context of this work, we use the
terms simulation and emulation with the following intentions: components that are em-
ulated will behave (in real-time) exactly at their real-world counterparts. The network
emulation in Mininet is an example – there is essentially no difference for the OS be-
tween a virtual network adapter in Mininet, and a real physical network adapter. We
note that the timing of the emulated components will be similar to the real counter-
parts, but might not match exactly. The emulated components will run in real-time,
and cannot be sped up or slowed down in their operations. Emulated components
should be able to interact directly with other emulated components, if their real-world
counterparts are able to interact.

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 13

In contrast, simulated components operate on a reduced model to analyze selected
properties of the target system. The simulation might run in real-time, or faster/slower.
The simulated component will typically interact with other components through chan-
nels that do not replicate real-world interactions. In this work, we assume that physical
processes can only be simulated. We also classify components as “simulated” if they
are only approximating their real-world counterparts in behaviour or interactions. We
note that in the context of MiniCPS, simulations will be restricted to real-time to allow
interoperability with emulated components.

For example, if (in the future) software is available in MiniCPS that processes real-
world PLC code (e.g. in ladder logic format), and replicates the behaviour of the PLC
accurately, then we would call this a PLC emulation. For now, our tools that represent
PLCs in MiniCPS are merely implementing a subset of PLC functionality, as manually
extracted by us from the analysis of the real-world PLC code.
Time. While the traffic data will be mostly identical, the temporal properties of the traf-
fic depend on the involved simulation scripts. In general, Mininet can emulate delays,
but does not provide deterministic guarantees for timing. We recognize that this could
lead to problems when simulating closed loop control over the network with very tight
timing, but we do not face those problems in our current application (a relatively slow
water testbed). We estimate that precision in the order of milliseconds could be possi-
ble.
Co-Simulation. Based on the high-fidelity network emulation, it is also possible to
connect simulated and real networks together, to enable cheap and easy evaluations of
real devices in emulated network environments. This integration is possible because
the network traffic is not simulated on some abstraction layer, but identical traffic run-
ning over an emulated physical network layer.
Physical-Layer Abstraction. The physical-layer integration into MiniCPS is mainly
relying on our API to represent the limited number of interaction points between the
physical process and the sensor/actuator (cyber) components. The API is intended to
enable different simulated components to interact on the physical layer directly, with-
out requiring complex specialized interfaces.
Reproducibility. In [82], the authors proposed to use tools such as Mininet to dissem-
inate reproducible research results. In particular, researchers can publish the scripts to
generate their network setups, which allows other researchers to reproduce the exact
same environments for their experiments. We strongly believe that such dissemination
of results would also be helpful in the context of security research, in particular when
systems which are less mainstream are considered. While it is relatively easy to repli-
cate office network settings as related software is well-known, specialized application
setups such as ICS would be valuable to share.
Integration of SDN. The detailed network emulation will allow us to use novel con-
cepts such as software defined networking in the context of CPS networks (see Sec-
tion 2.5). We note that to achieve this compatibility, we will be constrained to real-time
simulation instead of being able to simulate with arbitrary speedup.
What MiniCPS does not aim for. MiniCPS does not aim to be a performance simulator,
or tool for optimizations. In particular, we consider that full-fledged physical process
simulation is out of the scope of MiniCPS. Instead, MiniCPS focuses on connecting

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 14

FIGURE 2.2: MiniCPS framework layers: CPS components are simu-
lated as component logic, connected through the network emulation,

and physical layer simulation.

component simulation/emulation scripts together in a virtualized environment, and
enable simple connections to third party physical layer simulation tools. In addition,
we currently put very little emphasis on GUI or visualization. We note that building on
top of the physical layer API, and by extending the component logic scripts in general,
it should be possible to easily create real-time charts of physical process parameters or
controller states.

2.3.2 Design overview

Components in MiniCPS interact on several layers (see Figure 2.2). On the top layer,
we have the network through which messages are exchanged on top of ENIP, or other
protocols. Connected to this network are components, their logic is implemented in
simple scripts or more advanced software packages. If the real-world counterpart of
these components is interacting with the physical layer, the simulated components can
also access specific physical layer properties through a second API, which abstracts the
physical layer. To simulate chemical or physical processes, a selection of their prop-
erties can be made available through the API and updated in real-time by simulation
scripts.

2.3.3 Network Communication

For the main network emulation layer of MiniCPS, we are using Mininet (see Sec-
tion 2.2.2). We chose Mininet primarily because it allows lightweight emulation of a
large number of hosts and their network connections (Mininet’s SDN capabilities are
a welcome addition). Mininet allows to directly use IP-based industrial protocols over
the virtualized Ethernet connections. In contrast, other network simulation tools usu-
ally require an abstract re-implementation of the used protocols. Mininet allows to set
basic link properties such as delay, loss rates, and capacity. In MiniCPS, we use this
functionality to allow individual links to be configured with individual settings. As a

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 15

result, we can emulate wide area network connections and local area network connec-
tions with different properties.

Based on Mininet, the network communication in MiniCPS uses the default Linux
networking stack based on Ethernet. All components have virtualized network inter-
faces that are connected to each other. In particular, this setup allows us to construct
arbitrary topologies such as simple star topologies of switches connected to devices,
intermediate routers and firewalls, and topologies such as Ethernet rings. Protocols
such as the spanning-tree-protocol or other routing algorithms can be used to auto-
matically avoid looping configurations, and to establish routes. All standard protocols
such as ICMP, HTTP, NTP, etc. can be used right away. On top of that, specific indus-
trial protocols can be used. In particular, we use the CPPPO Python library to provide
fundamental EtherNet/IP (ENIP) services [104]. In addition to ENIP, CPPPO also sup-
ports protocols such as Modbus/TCP. In addition to CPPPO, we also use the pycomm
library for ENIP communications [155].

2.3.4 Physical Layer Interactions

Physical layer interactions between different components in the systems are captured
by our PHY-SIM API. This API is essentially a set of resources (currently files), that pro-
vide data in real-time. These resources can be read by components (i. e. a sensor reading
some physical property), or written to (typically, by a script that emulates physical pro-
cesses). The main purpose of the simple API is to allow different tools to interact with
it as easily as possible. For example, such tools could be Matlab, Python scripts, or ded-
icated physics simulators. Representing the physical layer properties as file resources
makes this API usable by a wide range of libraries and programming languages. We
also envision that it is possible to connect these files to an actual physical process, i. e.
to have the process in the simulation loop (if suitable interfaces to the physical system are
provided). In the long term, the simple API could be extended to a more generic API,
for example a RESTful API.

2.3.5 Implementation

MiniCPS is essentially a set of tools that extends Mininet, in particular by adding scripts
to represent components such as PLC, HMI, and historian servers, and by adding the
physical layer API and example physical process simulation scripts. Our class hier-
archy follows Object Oriented design principles: every reusable, self-contained piece
of code is wrapped inside a class (such as a topology, a topology manager or an SDN
controller).

Our implementation contains three core modules: constants, topologies, and de-
vices. The constants module collects data objects and helper function common to all the
codebase. The topologies module is a collection of ad-hoc CPS and ICS topologies with
realistic addresses and configurable link performance. The devices module contains a
set of control logic applications (see Section 2.5). Each core module is mirrored with a
testing module counterpart. Our class hierarchy design easily allows Test Driven De-
velopment [23] because each topology manager potentially can select a network config-
uration, a controller, the performance of the virtual links and even the CPU allocation
for each virtual host. In other words, a topology manager it is a self-contained topology

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 16

L1 Network

HMI

SCADA Historian

Remote IO

PLC1a PLC1b

PLCPLC

L0 Network

Sensor

42.42

Sensors

RIO

Process 1

Actuators

1. Write '0' to PLC valve tag

2. Write '0' to RIO valve tag

3. Low current analog signal

HMI

HMI

FIGURE 2.3: Normal control message flow in the CPS. We omit the ac-
knowledgment reply from the PLC in this visualization.

test. Each test module is a collection of test_Something classes with appropriate fixtures.
, e.g. to set the Mininet log level at setup.

We used the Python nosetests module to automate test design, discovery, execution,
profiling and report. The logging module enables interactive code debugging/alerting
and long time information storage. Each core module and its testing counterpart ap-
pend information to the same log file, that rotates automatically through five time-
sorted backups. SDN controllers log on separated files that are (over)written at run-
time. SDN code integration is obtained by means of soft links using an initialization
bash script.

We have implemented a first version of MiniCPS, and are currently in the process
of testing and extending its functionality. We released the tool to the public under
an open source license, with the main project website available at minicps.net. All
extensions are using Python, and are documented using the Sphinx package.

2.4 Example Application: MitM traffic manipulations

We mainly use MiniCPS to model the communications and control aspects of a wa-
ter treatment testbed at our institution (Singapore University of Technology and De-
sign). While the testbed is intended for security research, we find it useful to have
the MiniCPS emulation environment to replicate the network settings outside the lab.
In addition to simulated interactions with PLCs and sensors, the MiniCPS model also
allows us to experiment with different network topologies, and test SDN-related proto-
types. In the following, we highlight two such projects based on the MiniCPS model of
our testbed. The first application aims to provide on-the-fly manipulation of ENIP/CIP
traffic to change commands and sensor values as exchanged between an HMI and a
PLC. The second application (in Section 2.5) concerns SDN controller-based detection
and mitigation of ARP spoofing attacks in the testbed.

minicps.net

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 17

2.4.1 System model

Let us assume the following setting (see Figure 2.3): the HMI is used to manually con-
trol the valve of a water feed line towards a water storage tank. The control decision
is done on the HMI (e.g. operated by a human), based on the fill-level of the tank as
reported by a sensor in the tank. In practice we found that such settings are common.

Based on that scenario, we modeled the network, HMI, PLC, and the physical layer
interaction between the valve and the tank in MiniCPS. In particular, we modeled the
valve as a Boolean value, and the fill-state of the tank (depending on the current volume
of water held, and the inflow and outflow). The valve value is periodically read by
a process simulation script. If the valve is open, the current fill-state of the tank is
increased by an amount representing the inflow. Both the valve and fill-state are also
used by the PLC simulation script, which periodically reads the fill-state and provides
it as read-only CIP tag to the emulated network. The simulated PLC also provides a
writable CIP tag for the valve control.

2.4.2 Attack scenario

The attacker has access to the local L1 network, his goal is to arbitrarily change the
fill state of the tank. An example attack could aim to fill a water tank it over allowed
maximal capacity (and thus damaging the tank or flooding the environment), without
being detected.

As first naïve approach, an active attacker could potentially overwrite the valve
control tag (as there is no direct access control in ENIP), but the HMI will continuously
overwrite the setting to its intended state (in our system, with 10Hz). As a result, to
continuously change the valve setting, the attacker has to send a large amount of traf-
fic to compete with the intended control by the HMI, potentially interrupting normal
operations.

To mitigate this unintentional countermeasure, we developed a Man-in-the-Middle
(MitM)-based attack that does not increase the traffic load on either HMI or PLC, and
which does not interferes with other data exchanged between PLC and HMI. The attack
is based on ARP spoofing using the ettercap tool [58], and a custom ettercap script to
manipulate captured traffic in real-time. We now provide a brief summary of ARP
spoofing attacks, and then present the ENIP traffic manipulation attack in more detail.

ARP spoofing is a well-known attack in computer networks [186]. The attacker is
connected to the same Link Layer network segment as two victims, that are exchang-
ing messages. The attacker then sends specifically crafted address resolution protocol
(ARP) packets to both victims to cause them to send their messages to the attacker, in-
stead of each other. The attacker then forwards the redirected messages to the original
recipient, which allows him to perform a stealthy man-in-the-middle attack. We will
show a possible countermeasure against this attack in Section 2.5.

Using ARP-spoofing, an attacker in the Layer 1 network of an ICS system (as de-
scribed in Section 2.4.1) can redirect all traffic between two victims, e.g. PLC1 and the
HMI.

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 18

FIGURE 2.4: Abstract messages in the extended attack: in addition to the
modification of the control messages, the affected measurements from
the PLC are also manipulated to hide the attack. In this setting, PHY-

SIM could either be a real physical process, or our simulation layer.

L1 Network

HMI

SCADA Historian

Remote IO

PLC1a PLC1b

PLCPLC

L0 Network

Sensor

42.42

Sensors

RIO

Process 1

Actuators

1a. Write '0' to
 PLC valve tag

1b. Write '1' to
 PLC valve tag

2. Write '1' to
RIO valve tag

3. High current analog signal

Attacker

HMI

HMI

FIGURE 2.5: Control message flow during the ARP spoofing attack.

2.4.3 MitM Attack

In the MitM attack (see Figure 2.5), we used the ettercap tool [58] to run an ARP spoof-
ing attack, and as a result install the attacker as MitM between the HMI and the PLC
(see Figure 2.4). We wrote a set of ettercap filter rules to change the value written by
the HMI to the valve tag at the PLC. As a result, each time the HMI sent a control mes-
sage to the PLC to keep the valve closed, the attacker could then change this setting
to “open”, without fearing the HMI from overwriting it again. We developed and de-
ployed ettercap scripts to perform this attack in MiniCPS, and were able to successfully
change the valve tag to arbitrary values.

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 19

2.4.4 Including physical layer interactions

In our MiniCPS setup, we then simulated physical layer interactions based on the
MiniCPS physical layer API, and several scripts that updated physical layer proper-
ties based on a set of simple rules. As result, the valve opened by the attacker led to an
increasing fill-state of the tank, which was in turn reported by the PLC when queried
by the HMI. We note that this dependency is rather simple, and did not require com-
plex simulations. In practice, this would allow the HMI to at least trigger an alarm
condition after the tank is exceeding the maximal fill state.

To prevent such detection, we extended our attack with a second set of filter rules
in the attacker. In addition to rewriting the valve control values, the attacker now also
rewrote the value of the fill-state tag as reported from the PLC to the HMI. In particular,
the attacker could set this value to a constant, or apply some noise to it if wanted. We
successfully applied this attack in the MiniCPS environment.

After applying the attack in MiniCPS, we were able to validate the same attack to
the real physical testbed, with only minor modifications. The modifications were nec-
essary as the exact CIP messages exchanged between the HMI and PLC in the physical
testbed are not yet fully identical to the ones exchanged in our MiniCPS environment.
In particular, CIP supports different types of read operations, and our simulated PLCs
do not support the variant that is used in the real PLCs (due to limitations in the used
CPPPO library). Apart from these modifications, the same attack was successfully run.

2.5 Example Application: SDN

There are a number of known countermeasures against the ARP spoofing attack from
the previous section (e. g. static ARP tables in the hosts, traffic monitoring with an IDS).

As a side-effect of using Mininet in MiniCPS, it is relatively easy to experiment
with Software-Defined Network (SDN) technology. Given that, we were interested to
see how a customized SDN controller could be used to detect and prevent the attack
outlined in the previous section. In particular, SDN promises to allow a controller
to manage CPS packet switching rules and to prevent or detect/mitigate malicious
hosts packets. SDN-based solutions in the context of smart power grids were also re-
cently proposed in [52]. In a more general context, related work was published recently
in [194, 193].

We note that, while in many applications SDN is used to address highly dynamic
network conditions, traffic in industrial control systems is usually quite predictable. In
particular, topologies and the set of hosts remain static (until the system is updated
with new components). In addition, we noticed that components exchange essentially
the same traffic, with varying data payload. For example, tag values could be queried
every 100ms, and control commands could be sent every second, resulting into regular
traffic patterns. As result, we can use the SDN paradigm to extract and enforce these
traffic patterns, which allows us to detect and prevent ARP spoofing attacks.

We now introduce SDN in general, the POX controller project in particular, and then
show how we used MiniCPS to prototype a simple POX controller design to prevent
such ARP spoofing completely in our testbed.

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 20

2.5.1 SDN Background

Software Defined Networking (SDN) is a novel architectural way to think about build-
ing networks and OpenFlow is the de-facto standard interface protocol between the
SDN controlling logic and the network devices (physical and virtual). Both ideas were
proposed by M. Casado and they derive from SANE [31], a protection architecture for
enterprise networks.

SDN implementation defines a set of abstractions to provide separation of concerns
at the control plane, in a similar way as the layering model that is used at the data plane.
At the bottom of the stack there are network devices that form the physical topology.
On top of that there is a Network Operating System (NOS) able to talk to each device
and to serve a network view, in the form of an annotated graph, to the layer above.
A virtualization layer is able to process this graph and provide only relevant details
to the level above through an API. At the top of the stack there is the control logic
that defines policy over the network assessing the processed graph. Communications
between the control logic and the physical devices is bi-directional: network device
messages will update the network graph and control plane messages will update the
network policy. With this setting, the end-to-end principle is also applied to the control
plane. The (complex) management of the network is shifted on the edges and central
network devices merely act as relays, becoming an homogeneous set of forwarding
objects referred as datapaths.

A Software-Defined network is managed by a control logic that dictates to the dat-
apaths how to forward packets using a dedicated control plane protocol (e. g. Open-
Flow). The control logic may be a centralized program running on a server (known as
a SDN controller), a set of programs divided into modules by functionality (known as a
Network OS) or even a set of equal or different distributed programs running on differ-
ent servers. The control logic rules may act on single packets (micro-flow rules) or on
a set of packets sharing some properties (aggregate-flow rules). The control logic strat-
egy may be static and loaded at initialization time (proactive), dynamic and updated
at runtime (reactive) or hybrid implementing both of them.

There are various interesting projects regarding SDN and OpenFlow, and it is rel-
atively easy to find a platform that implements the core modules, namely the NOS
and the virtualization abstractions. In our work we decided to use the POX [128] plat-
form because it is targeted for the research community, it offers out of the box libraries
and components, and it is object-oriented, event-driven with synchronous and asyn-
chronous handling capabilities. In addition, POX is completely written in Python and
it integrates well with our set of tools (Scapy, CPPPO, Mininet, MiniCPS).

In the POX framework, events represent communication from the network to the
control logic (e. g. new datapath connections) and callbacks represent communication
from the control logic to the network (e. g. install a new rule). Event handling is priority
based: the same event can be handled sequentially by different callbacks, a callback can
potentially stop the handling chain and the same callback can handle multiple events.

2.5.2 Preventing MitM attacks with a custom SDN controller

We now present our SDN controller design, which aims to prevent the ARP spoofing
attacks as discussed in the previous Section. In particular, our controller will analyze all

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 21

L1 Network

HMI

Switch

SCADA Historian

Remote IO

PLCPLC

L0 Network

Sensor

42.42

Sensors

RIO

Process 1

Remote IO

PLCPLC

L0 Network

RIO

Process 2

Remote IO

PLCPLC

L0 Network

RIO

Process n

...

Actuators

Sensor

42.42

SensorsActuators

Sensor

42.42

SensorsActuators

...

SDN Controller

OpenFlow

PLC1a PLC1b PLC2a PLC2b PLCna PLCnb

HMI

HMI

FIGURE 2.6: Extension of the generic ICS network with an OpenFlow
switch and SDN controller.

ARP traffic, classify it as malicious or benign, and then update the SDN switches with
suitable rules to prevent malicious attacks. Our attacker model consists of an attacker
able to impersonate a network device (known or unknown to the other testbed hosts)
that aims to mount a passive or active MitM attack using ARP poisoning over our
real/emulated testbed L1 wired ENIP network.

Our POX controller implements a fully centralized SDN control plane with per-flow
forwarding rules. Our control plane program uses both a proactive approach to per-
form a static pre-mapping and a reactive approach to adapt dynamically to the context.
The detection and prevention code runs with higher priority than the management
code and it is able to block the event handling chain.

Every time a new switch is connected to the network, our control logic will create
a new reference to the network state accessible by the switch. According to OpenFlow
protocol, when a switch doesn’t know how to forward a packet it sends (a part of) it to
the controller and it waits for instructions (that’s when POX raises a PacketIn event).
Our control logic process unknown ARP reply and ARP request packets, sent by the
switches, verifying their consistency according to the network state. The controller
is able to detect both internal and external ARP spoofing attempt and to prevent both
passive and active ARP MitM attacks. In normal ARP request/reply circumstances, the
controller dynamically updates the network state.

As shown in Figure 2.7, suspicious ARP request packets are signaled as warnings,
and they are mirrored to a well-know port (potentially connected to a dedicated IDS
for deep packet inspection), but the PacketIn handling chain is not halted. In contrast,
suspicious ARP replies are actively managed: the control logic will install a permanent
rule on the relevant switch to permanently block all the traffic coming from the attacker,
the blacklist rule is based on the attacker MAC address and the used input port (but can
be easily tuned according to the scenario). Finally, the controller will block the PacketIn
handling chain.

In addition to this simple attack detection and prevention strategy, we are currently

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 22

FIGURE 2.7: ARP spoofing prevention flow chart. The process either
allows the PacketIn event handling (green) or blocks it (orange).

developing more elaborated ARP detection and mitigation techniques, in particular (i)
an ARP cache restoring handler, and (ii) spoofing detection based on static mapping of
MAC/IP pairs. The ARP cache restoring feature will periodically or asynchronously
sends ARP replies to potentially every host in the network, forcing it to update its ARP
cache with fresh and consistent data. The strong static premap feature will allow the con-
troller to send to every new datapaths a set of predefined flow rules to speedup initial
traffic congestion and policy establishment (e. g. who can talk to who). Eventually, this
mechanism can be extended with a dynamic policy checker component, that is able to
validate and restore the correct network state requesting and processing general and
aggregated flow statistics directly from the datapaths. We think that those two add-ons
will protect the network against (pre)mapped switches containing inconsistent rules
and DoS attacks. We plan to extend our current centralized design into a more robust
distributed scheme by using multiple synchronized controllers able to tolerate single
point of failure in the control plane domain.

2.6 Related work

Security aspects of CPS have been discussed in [108, 182, 196, 197], in particular in the
context of smart power grid infrastructure and control.
Process and network co-simulation. In [52], Dong et al propose a testbed that is similar
to our MiniCPS platform in several ways. In particular, they propose to use Mininet
as network emulation platform, a power grid simulation server, and a control center
simulation server. The envisioned testbed uses Mininet to simulate delays related to
dynamic network reconfigurations in the case of failures. In general, the authors just
discuss the use case of the smart power grid, with component such as sensors and
actuators connected to a central control via RTUs.

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 23

We note that MiniCPS differs from the testbed in [52] in several ways. Most impor-
tantly, MiniCPS’ focus is on sharing reproducible CPS network topologies, in particular
related to industrial control systems. MiniCPS focuses on using a set of PLC simula-
tion tools, that directly interact with the network traffic, and the physical layer API.
The physical layer API abstraction is not present in [52], as the authors propose the
use of a powerful power-grid simulation tool (PowerWorld). In MiniCPS, the (generic)
API allows to combine different types of physical layer simulations (e.g., combining
water flow, mechanical levers, temperature transfer). Finally, the industrial protocol
differs (ENIP vs. DNP3). From [52], it seems that the proposed testbed was not yet
fully implemented.

In [34], a framework with similar intent as MiniCPS has been proposed. The frame-
work uses OMnet++ as network simulation tool, and also features simulation of phys-
ical layer (e.g. a chemical plants). The authors simulated denial of service attacks on
the sensor data, and the resulting control actions. As OMnet++ was used for network
simulations, network communication was simulated as abstract messages that were
routed through components, instead of simulating the full TCP/IP+industrial protocol
stack. As a result, attacks such as our MitM ettercap manipulation could not be sim-
ulated in detail (i. e. considering all fields of the CIP/ENIP messages). On the other
hand, simulations like [34] allow to use timescales other than real-time.
SDN. On the topic of SDN, SANE [31] represents one the first practical SDN-based
solution for secure network design. The proposed implementation already included
common SDN core concepts like centralized control logic, high level network policy
design and easy network scalability.

SDN and OpenFlow projects involved from the beginning both academia and lead-
ing IT industries, that eventually found the Open Networking Foundation (ONF). There
are several other recommended papers about SDN [60, 174, 133] and OpenFlow [120,
193].
Physical layer simulation tools. PowerWorld is a commercial (interactive GUI-based)
power transmission grid simulation. PowerWorld does not provide capabilities to di-
rectly interact with industrial communication protocols and does not simulate com-
munication network aspects. In [20], the authors present a test bed which combines
physical layer simulation with PowerWorld, and abstract network simulation based on
the RINSE [107] tool.

2.7 Conclusion

In this work, we proposed MiniCPS, which uses Mininet together with a physical layer
API and a set of matching component simulation tools to build a versatile and light-
weight simulation system for CPS networks. While currently the physical layer sim-
ulation is very simplistic, we believe that our general framework will (a) researchers
to build, investigate, and exchange ICS networks, (b) network engineers to experiment
with planned topologies and setups, and (c) security experts to test exploits and coun-
termeasures in realistic virtualized environments.

MiniCPS builds on Mininet to provide lightweight real-time network emulation,
and extends Mininet with tools to simulate typical CPS components such as programmable

Chapter 2. MiniCPS: A toolkit for security research on CPS networks 24

logic controllers, which use industrial protocols (EtherNet/IP, Modbus/TCP). In addi-
tion, MiniCPS defines a simple API to enable physical-layer interaction simulation. We
demonstrated applications of MiniCPS in two example scenarios, and showed how
MiniCPS can be used to develop attacks and defenses that are directly applicable to
real systems.

25

Chapter 3

Towards high-interaction virtual
ICS honeypots-in-a-box

Keywords: Honeypot, High-interaction, Virtual, In-a-box, Detection.

3.1 Introduction

Industrial Control System (ICS) security is a promising research topic, because it com-
bines traditional cyber-security threats with control system security ones [168, 169].
Attacks targeting ICS, such as the sophisticated stuxnet worm, are becoming more fre-
quent, and can have serious consequences (e.g., economical damages, environmental
catastrophes and loss of human lives [163, 59]).

It is fundamental to harden the security of an ICS, especially in this decade where
often ICS devices are facing the Internet on a public IP. Typical defense mechanisms
include the use of industrial firewalls to segment the network architecture, and Intru-
sion Detection Systems to monitor the network traffic, and react in case of suspicious
activity.

In security research, honeypots are vulnerable systems that are set up by defenders
with the intent to be probed and compromised by attackers. Monitoring systems will
then record traces of the attacks and actions taken. In that context, honeypots are able
to provide detailed information about the attacker’s activities, and to defend-against,
or slow-down, the ongoing attack. Honeypots are extensively used in traditional ICT
systems, but they are rarely deployed in the ICS domain, mainly because of the very
high associated costs, and maintenance’s complexity. So far, little academic work has
been done in the domain of ICS honeypot design and implementation.

In this work, we propose a design for realistic virtual ICS honeypots. Our design
addresses the main challenges for ICS honeypots related to ICT and ICS requirements
(e.g., time, determinism, and operating cost). We present an attacker model for the ICS
honeypot that captures the goals, the skills, the resources, and the entry points of the
attacker. According to the requirements of the attacker model we then propose our
architecture design. We classify the presented ICS honeypot as server-based, and high-
interaction honeypot (to satisfy the realism constraints), and virtual (to satisfy the cost
and maintainability constraints).

We then present an implementation based on our ICS honeypot design. The imple-
mentation leverages the MiniCPS framework, which combines lightweight virtual net-
work emulation with physical process, and ICS devices simulation, to help researchers

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 26

simulating Cyber-Physical Systems. To the best of our knowledge, the presented hon-
eypot implementation is the first academic work targeting EtherNet/IP based ICS, the
first ICS virtual honeypot that is high-interactive without the use of full virtualization
technologies, such as a network of virtual machines, and the first ICS honeypot that
can be managed with a Software-Defined Network controller.

To show the effectiveness of the implemented honeypot, the chapter presents the
evaluation of a honeypot that is mimicking a water treatment testbed. The attacks on
that system were conducted in the context of a cyber-security Capture-The-Flag event.
The evaluation confirms that honeypots are a potential solution also in the ICS domain
and that they can be integrated in an ICS defense-in-depth scheme.

Honeypot development is a broad topic, and the chapter is focusing on the hon-
eypot’s core functionalities such as: the network, the physical process, the physical
devices and the data retrieval. In particular, the chapter is not focusing on the data
post-processing part (e. g. no data analytics).

The rest of the chapter is organized as follows: in Section 3.2, we introduce ICS
networks, ICS honeypots, and the MiniCPS framework. The honeypot’s requirements,
attacker model, and proposed design are presented in Section 3.3, and the honeypot’s
implementation core components, and additional benefits are presented in Section 3.4.
In Section 3.5, we present the evaluation of the implemented system. Related work is
summarized in Section 3.6. We conclude the chapter in Section 3.7.

3.2 Background

We now briefly summarize ICS networks, and ICS honeypots Then, we introduce the
MiniCPS framework.

3.2.1 ICS Networks

Industrial Control Systems (ICS) are used to supervise and control systems such as criti-
cal infrastructure (electric power, and water), and public transportation systems (trains,
and planes). In this work, we assume the system consists of supervisory components,
such as human-machine interfaces and servers, programmable logic controllers, sen-
sors, and actuators. All those components are interconnected through a network with
a specific topology. We provide the network topology of a generic ICS network as an
example in Figure 3.1.
Programmable logic controllers. PLCs are the core controllers of an ICS. Each device
runs a program, also known as control logic, that is able to perform many tasks such as:
reading values from a sensor, requesting specific values from other PLCs, and driving
an actuator. If the ICS can be divided into stages, then each PLC typically controls one
of these stages.
Sensors and actuators. Those components interface with the physical process, and
they are either directly connected, or indirectly connected, via remote input/output
units (RIOs) or PLCs, to the network.
Network Devices. An ICS uses different types of network devices. Industrial switches
and firewalls are deployed to segment the network into layers (e. g. DMZ, and control

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 27

network). Gateway devices are used to translate one protocol into another (e. g. Mod-
bus into Modbus/TCP). Remote Terminal Units (RTUs) are deployed on the filed to
collect and send data back to the SCADA system. We also note that industrial Ether-
net switches are often focused on electrical reliability, rather than IP-layer functionality
(e.g. the Rockwell Automation Stratix 5900 switch).
Network Topology. Traditionally, ICS follows standard like RS-232 to connect together
different components. Additionally, alternative field bus schemes, such as RS-485 and
PROFIBUS, have been used. In specific situations where reliability is a major concern,
ring [40] topologies are widely used in practise due to ease of deployment, and single-
point-of-failure tolerance with very low reaction time.
Industrial protocols. In recent years, ICS networks are transitioning to traditional ICT
technology like Ethernet (IEEE 802.3), and TCP/IP. However, the need for reliability,
and interoperability with existing equipment led to the development of customized
industrial protocols, such as Ethernet rings, and EtherNet/IP (ENIP) [129]. We now
discuss the main ENIP features as an illustrative example of an industrial protocol.
ENIP is a Real Time Ethernet (RTE) field bus based on TCP/IP, with a custom ap-
plication layer designed to meet typical industrial communications requirements, like
time constraints, and packet determinism. Technically, ENIP is an Ethernet based im-
plementation of the Common Industrial Protocol, and it is defined in the IEC 61784-1
standard [63]. A PLC uses CIP messages to obtain sensor readings, to query another
component, to set configuration options, to update its firmware, and even download
a new control logic. In that model, sensor readings and control values are represented
by tags, that are like variable names in a programming languages. CIP uses a request-
response model, and such requests can operate on tags, and on the meta-data associ-
ated with the tags.
Topology layers. ICS networks typically are layered in different zones (more details
in [124, 142]). On the lowest layer, controller devices are connected to sensors and
actuators, or to remote input/output (RIO) devices, capable of converting raw sensors
and actuators signals into Ethernet-based packets. The next layer will connect together
the controller devices, and the additional devices such as: Human-Machine-Interface
(HMI), engineering workstation, and historian server. For simplicity, all these devices
are often kept in the same IP-layer sub-network, although more complex topologies are
possible.

3.2.2 ICS Honeypots

A honeypot is a system intended to be probed, attacked and compromised [165]. Histor-
ically, the idea behind the development of modern honeypots comes from the nineties,
where skilled computer programmers and system administrators were playing in real
time with the attackers, to gain information about their targets, techniques, exploited
vulnerabilities and ultimately for fun [37, 167].

Honeypots can be classified by means of different orthogonal features. Real honey-
pots use real physical devices to replicate the target system. They are the most realistic
solution, however in the ICS domain their deployment is too expensive in terms of
money, maintenance and space. On the other hand, virtual honeypots utilize virtual-
ization technologies, such as PLC emulators, to reproduce a system, and they offer a

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 28

FIGURE 3.1: Example local network topology of a plant control network.

compact, and low-cost solution. Hybrid honeypots include a mixture of virtual and real
devices, and they might be an interesting cost-effective solution for the ICS domain.

One of the core aspect of an honeypot is its level of realism. Low-interaction hon-
eypots simulate only specific systems services (such as a telnet daemon), providing a
narrow attack surface. Indeed they are easy to develop, configure, and secure against
the attacker. However, the effectiveness of a low-interaction honeypot in the ICS do-
main is questionable, mainly because the ultimate targets of an ICS attack are the phys-
ical process and the ICS devices, and these parts are not simulated by low-interaction
honeypots. In contrast, high-interaction honeypots use real services running on real Op-
erating Systems, such as a webserver running on Linux listening to port 80, or simulate
the services and the relevant parts of an Operating System. High-interaction honey-
pots provides a realistic environment for the attacker, a large attack surface, and they
are tricky to implement, and secure against a motivated attacker. To the best of our
knowledge, in the context of ICS honeypot there is no standard definition regarding
high-interaction honeypots. The chapter defines an high-interaction ICS honeypot as
an honeypot able to simulate both the physical process, and the ICS devices’ control
logic, and to emulate the ICS network using industrial protocol stacks, and network
topologies.

Honeypots have different roles with respect to the attacker. Server-based honeypots
expose, over an insecure channel, a number of vulnerable services, that are passively
listen to well-known ports. In simple words, a server-based honeypot is passively wait-
ing to be attacked. In contrast, a client-based honeypot acts as vulnerable client appli-
cation, such as a web browser, and it actively looks for an attack from a malicious
webserver.

Honeypots are used in different contexts. Research honeypots implement well-
known vulnerabilities to lure attackers, and to study their behaviours, or (less often)
for educational and security training purposes. Production honeypots are supposed to
be more secure, and they are deployed to defend a system against an attacker. In the
best case, the production honeypot will prevent the attacker to sabotage the real sys-
tem, in the average case it will slow-down the attack, and hopefully will increase the
attacker frustration, and in the worst case it will help the attacker to complete his job.

It is important to emphasize that ICS honeypots present additional requirements

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 29

compared to traditional ones, most importantly time and determinism constraints. An
ICS device has to complete a sequence of tasks within a critical time interval, and in
a precise order, that’s way it uses a Real Time Operating System with a deterministic
scheduler. In the same manner, ICS packets are sent over the network with a specific or-
der, and they had to reach their destinations within a time period, that’s why industrial
protocols, such as EtherNet/IP, are extended with special application layer features to
address these requirements. An ICS honeypot has to take into account these factors
with great care, otherwise the attacker can easily detect the honeypot with simple tests.

There are many academic and industrial projects involving honeypots. In the do-
main of traditional network security we have honeynets, that are networked honey-
pots able to communicate among themselves in a NIDS fashion [78]. In the context of
ICS and SCADA the most well known (still active) project is Conpot [173], an open-
source ICS/SCADA honeypot, that is part of a large-scale project called The Honeynet
Project [166].

3.2.3 MiniCPS Framework

MiniCPS [10] is a toolkit for security research on Industrial Control System (ICS) secu-
rity. It builds on top of a lightweight Linux network emulator called Mininet [105], and
it extends its application to the ICS domain.

MiniCPS combines network emulation, physical process simulation, and ICS de-
vices simulation to build a real-time, ICS simulation in-a-Box. It is a framework writ-
ten in Python, and it provides an high-level, object-oriented, public API. MiniCPS is
developed using modern and agile techniques, like distributed source version control,
test-driven development, build and documentation automation, and it is free and open
source (MIT license) [6].

In this work, we propose to extend MiniCPS in the context of ICS honeypots. Those
honeypots traditionally lack a realistic network sub-systems or focus on the simulation
of a single ICS device, like a PLC. With the help of MiniCPS, we can reproduce the
exact ICS network topology with PLCs, HMI, middle boxes, etc.. We can use the same
network configuration as the real ICS, to take care of the attacker host enumeration, and
fingerprinting phase (e. g. same IP, MAC, and net masks). From the emulated network
the attacker may discover real ICS services, listening to standard ports, such as ssh or
VPN servers. Furthermore, MiniCPS supports link shaping, meaning that each host
can be configured with a custom link bandwidth, packet loss rate, and time latency.

MiniCPS’s public API can reduce the honeypot’s development time, and increase
the portability of the developed code across different simulation experiments, involv-
ing different physical processes and industrial protocols. The public API is built against
four core methods: set, get, send and receive. Each device in the simulated ICS
inherits (a subset of) these methods according to its functionality. For example, a PLC is
able to get (read) a sensor value, and set (write) an actuator command, additionally
a PLC can send (serve) a packet over the wire, or receive (request) a packet from the
wire.

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 30

3.3 High-Interaction, Virtual ICS Honeypot Design

3.3.1 ICS Honeypots

A honeypot is a system intended to be probed, attacked and compromised [165]. Histor-
ically, the idea behind the development of modern honeypots comes from the nineties,
where skilled computer programmers and system administrators were playing in real
time with the attackers, to gain information about their targets, techniques, exploited
vulnerabilities and ultimately for fun [37, 167].

Honeypots can be classified by means of different orthogonal features. Real honey-
pots use real physical devices to replicate the target system. They are the most realistic
solution, however in the ICS domain their deployment is too expensive in terms of
money, maintenance and space. On the other hand, virtual honeypots utilize virtual-
ization technologies, such as PLC emulators, to reproduce a system, and they offer a
compact, and low-cost solution. Hybrid honeypots include a mixture of virtual and real
devices, and they might be an interesting cost-effective solution for the ICS domain.

One of the core aspect of an honeypot is its level of realism. Low-interaction hon-
eypots simulate only specific systems services (such as a telnet daemon), providing a
narrow attack surface. Indeed they are easy to develop, configure, and secure against
the attacker. However, the effectiveness of a low-interaction honeypot in the ICS do-
main is questionable, mainly because the ultimate targets of an ICS attack are the phys-
ical process and the ICS devices, and these parts are not simulated by low-interaction
honeypots. In contrast, high-interaction honeypots use real services running on real Op-
erating Systems, such as a webserver running on Linux listening to port 80, or simulate
the services and the relevant parts of an Operating System. High-interaction honey-
pots provides a realistic environment for the attacker, a large attack surface, and they
are tricky to implement, and secure against a motivated attacker. To the best of our
knowledge, in the context of ICS honeypot there is no standard definition regarding
high-interaction honeypots. The chapter defines an high-interaction ICS honeypot as
an honeypot able to simulate both the physical process, and the ICS devices’ control
logic, and to emulate the ICS network using industrial protocol stacks, and network
topologies.

Honeypots have different roles with respect to the attacker. Server-based honeypots
expose, over an insecure channel, a number of vulnerable services, that are passively
listen to well-known ports. In simple words, a server-based honeypot is passively wait-
ing to be attacked. In contrast, a client-based honeypot acts as vulnerable client appli-
cation, such as a web browser, and it actively looks for an attack from a malicious
webserver.

Honeypots are used in different contexts. Research honeypots implement well-
known vulnerabilities to lure attackers, and to study their behaviours, or (less often)
for educational and security training purposes. Production honeypots are supposed to
be more secure, and they are deployed to defend a system against an attacker. In the
best case, the production honeypot will prevent the attacker to sabotage the real sys-
tem, in the average case it will slow-down the attack, and hopefully will increase the
attacker frustration, and in the worst case it will help the attacker to complete his job.

It is important to emphasize that ICS honeypots present additional requirements
compared to traditional ones, most importantly time and determinism constraints. An

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 31

ICS device has to complete a sequence of tasks within a critical time interval, and in
a precise order, that’s way it uses a Real Time Operating System with a deterministic
scheduler. In the same manner, ICS packets are sent over the network with a specific or-
der, and they had to reach their destinations within a time period, that’s why industrial
protocols, such as EtherNet/IP, are extended with special application layer features to
address these requirements. An ICS honeypot has to take into account these factors
with great care, otherwise the attacker can easily detect the honeypot with simple tests.

There are many academic and industrial projects involving honeypots. In the do-
main of traditional network security we have honeynets, that are networked honey-
pots able to communicate among themselves in a NIDS fashion [78]. In the context of
ICS and SCADA the most well known (still active) project is Conpot [173], an open-
source ICS/SCADA honeypot, that is part of a large-scale project called The Honeynet
Project [166].

3.3.2 Problem Statement

In this work, we address the problem of designing an ICS honeypot with the following
requirements:

• Realistic, with multiple services supported.

• Low cost, in terms of hardware, software, and deployment time.

• Reconfigurable, to allow extensibility, scalability, and secure maintenance.

• Targeting the ICS domain, dealing with physical processes, physical devices, in-
dustrial protocols, time, and determinism constraints.

• Usable both for research, and production.

To the best of our knowledge, there exists no related work that presents a solution
able to satisfy the outlined requirements. Given the ICS honeypot classification criteria,
and related tradeoff presented in Section 3.3.1, we are proposing the design of a virtual,
high-interaction, server-based ICS honeypot, to solve our problem. In the remaining part
of the section we will present the reference attacker model, and the related system
architecture.

3.3.3 Attacker Model

In this section we present the reference attacker model. We assume that attacker reaches
the honeypot over the Internet, e. g. finding an honeypot’s Internet facing device us-
ing general purpose search engines, such as Google, or more targeted ones such as
Shodan [118]. Once connected to the ICS internal network, the attacker is able to fin-
gerprint the target ICS system, using tools such as nmap, and xprobe2. As result, the
attacker is able to obtain basic system information, such as the number of devices, their
addresses, their ports status, and the type of industrial protocol.

We assume that the attacker has a basic knowledge about not-well documented
industrial protocols, such as EtherNet/IP, and extensive knowledge about well docu-
mented ones, such as Modbus, and DNP3. The attacker may also be familiar with the
underlying physical process, and control logic.

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 32

We assume that the attacker connects to the honeypot only through the intention-
ally vulnerable interfaces, and that the provided interfaces define the initial attacker
surface. For example, if the attacker connects to a VPN server, using default creden-
tials, then he can only interact over the network. Nothing prevents the attacker from
escalating his privileges within the honeypot, for example once connected to the in-
ternal network, the attacker may discover an intentionally vulnerable gateway device,
and get a root shell on that device.

We assume that the attacker interacts with the physical processes, and the ICS de-
vices both as a fair, and malicious device. For example, the attacker as a malicious
device may send malformed packet, unauthorized commands, perform Man-in-the-
Middle attacks (both passive and active), and try to Denial-of-Service the honeypot.

We are limiting the attacker model to what we think is a reasonable scenario. We
understand that there are more powerful attacker models, such as the ones profiling
a disgruntled employee or an insider threat, however we reserve the option to extend
the presented honeypot design, and implementation to deal with these kind of attacks
in future work.

3.3.4 System Architecture

The main contribution of the chapter is the design, implementation, and evaluation of
a realistic, low-cost, and reconfigurable honeypot targeted to ICS. In this section we
present our design points according to the requirements presented in Section 3.3.2, and
the attacker model presented in Section 3.3.3.

We classify the presented honeypot as follows:

• Virtual (lightweight virtualization).

• High-interaction.

• Server-based.

• Targets ICS requirements.

• Research and Production usage.

The use of virtualization allows us to implement a low-cost solution, that is easy
to configure, reproduce, deploy, and maintain. High interaction is crucial to support
multiple services and to keep the attacker busy as long as possible. Our honeypot is
server-based, because it has to expose realistic services, listening on standard ports that
are accessible from outside the ICS internal network perimeter. We envision that our
honeypot could be used both in research and production environments. Researchers
could use the honeypot system to learn about novel threats in the wild, while plant
operators could use the honeypot system to detect specific threats targeted to their
system, or mitigate ongoing attacks.

Figure 3.2 shows an high-level comparison between the presented honeypot archi-
tecture and a real ICS architecture. As dictated by the attacker model, our attacker
comes over the Internet, and he can access the fake ICS internal network using two
different vulnerable interfaces that he may discover during the attack reconnaissance

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 33

High-Interaction virtual honeypot

Real ICS/SCADA system

SIS

Simulated PLC

 Simulated HMI

Attacker
Gateway

PLC

HMI

PLC

Gateway

ICS
networkSSH

Telnet

Device

Gateway

SSH
Telnet

Device

VPN PLC

Internet

Emulated
network

VPN

Physical
Process

Simulation

Physical
Process

FIGURE 3.2: High-Interaction Virtual ICS Honeypot vs. Real ICS Archi-
tecture.

phase. The first interface will give the attacker access to the honeypot over the net-
work, in the figure we are using a vulnerable VPN server as an example. The second
interface will give the attacker a command line interface on an ICS device connected
to the internal network, in Figure 3.2 we are using a vulnerable gateway device as an
example.

An emulated network enables us to reproduce the same network topology as the
real ICS, with the same number of hosts, addresses, and link characteristics. The em-
ulated hosts send packet over the virtual network using real protocol stacks (e. g. Eth-
erNet/IP or ARP). A set of simulated devices reproduces the control logic of the ICS
system, and a physical process simulation mimics the real physical process. With those
modular settings, we can separate the individual device control logics, and the physical
process simulation in different sub-systems, allowing to reuse the blocks according to
the honeypot initial configuration.

The ICS block is represented with dashed lines, to underline the fact that the pro-
posed design physically separate the honeypot network from the real ICS one. In con-
trast, traditional honeypots are deployed inside the internal network, using unallocated
IP addresses, and their separation from the real system is logical, typically by means
of a firewall, a router or an ARP proxy. The physical separation between the honeypot
and the real ICS provides an additional layer of security for free, meaning that an at-
tacker who gained (privileged) access to the honeypot is not connected to the real ICS
network, but to a virtualized emulated replica.

We explicitly focus on the design, and implementation of the core honeypot func-
tionalities such as physical layer and network layer interaction, or data collection. In
particular, we are not focusing on the data post-processing and analysis, and we refer
to existing frameworks such as [138].

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 34

3.3.5 Qualitative Metrics

We stated that realism is one of our goals. Our assumption is that realism is required
to attract interesting attackers. In particular, more knowledgeable attackers might rec-
ognize that they are interacting with a honeypot more quickly if the realism of the
honeypot is lower. In practise, it can be hard to measure realism in a quantitative way.
In the following, we propose some qualitative metrics to determine to which degree
our honeypot represents a realistic system faithfully. To the best of our knowledge,
there do not exist common metrics for such an evaluation so far.

We will use the following metrics later in the evaluation section to specify a sum-
mary of our honeypot prototype capabilities (e. g. honeypot provides feature 1, and
does not provide feature 2). The following metrics are complementary to the proposed
attacker model, and to the set of already presented requirements. We decided to di-
vide the metrics into two categories: network and physical, and each category into sub-
categories.

Our network metrics:

• Network Parameters: IP, MAC and netmask addresses are identical to a real sys-
tems.

• Link Shaping: average packet loss, delay, and bandwidth can be set to compara-
ble values as found in real systems.

• Infrastructure: The network topology is matching the real system exactly.

• Protocol: communications between devices in the honeypot use standard-compliant
implementations of industrial, and common protocols (e. g. ARP, HTTP, DHCP).

• Advanced traffic properties: perfect sequence of messages and delay, matching a
real system identically.

Our physical metrics:

• Process: The physical process simulation uses a realistic mathematical model of
the process (with time steps < 1 minute).

• Devices: The honeypot provides real time simulation of sensor readings, actuator
driving, and control logic.

• Human operator: the honeynet allows to simulate interactions of human opera-
tions.

• Advanced process: Simulation fast state change (e. g. transient, time steps < 1 s).

3.4 Honeypot Implementation with MiniCPS

Our honeypot implementation is based on the MiniCPS framework described in Chap-
ter 2. To the best of our knowledge, the presented honeypot implementation is the first
academic work targeting EtherNet/IP based ICS, the first ICS virtual honeypot that is
high-interactive without the use of full virtualization technologies, such as a network

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 35

 SDN
Controller

Switch
Physical
Process

Simulation

Physical
Layer
API

Gateway
192.168.1.77

Attacker

Internet

Attacker

Internet

Device
192.168.1.76

PLC4
192.168.1.40

VPNVPN

SSH
Telnet
SSH

Telnet

PLC3
192.168.1.30

PLC2
192.168.1.20

PLC1
192.168.1.10

HMI
192.168.1.100

EtherNet/IP

High-Interaction virtual honeypot

FIGURE 3.3: ICS Honeypot Implementation Block Scheme.

of virtual machines, and the first ICS honeypot that can be managed with a Software-
Defined Network controller.

Figure 3.3 presents the basic building blocks of our implementation, using Ether-
Net/IP as the reference industrial protocol. The vulnerable, Internet-facing devices are
connected to the internal network, and they are the attacker’s baits. A virtual switch
is distributing EtherNet/IP traffic in the internal network, enabling ARP poisoning
attacks, packet sniffing, and malicious command delivery. Every simulated host is con-
nected to the virtual network, and it is exposing real services. For example, PLC1 may
expose an EtherNet/IP server for explicit messaging, listening on standard TCP port
44818, that is addressable with realistic tag names, and pre-loaded with realistic tag
values. Another example is a Human Machine Interface (HMI), that exposes an HTTP
configuration interface through a webserver listening on port 80.

We now provide details on the implementation of the vulnerable VPN endpoint, the
vulnerable gateway device, the simulated ICS devices, the network emulation, and the
data collection subsystem. Finally, we describe additional benefits discovered during
implementation time.

3.4.1 Vulnerable VPN Endpoint

Virtual Private Network (VPN) are widely used in ICS network to establish a secure
channel between a host located outside the control network, and a network interface
inside the control network.

Our target hardware platform is an Allen-Bradley Stratix 5900 Router, with firewall
capabilities. The target device runs an IPv4, OpenConnect (Cisco) VPN server, reach-
able from the Internet with weak credentials: user is admin, and password is admin.
Given this vulnerable VPN server, the attacker is able to get an IP in the internal net-
work, and interact with the honeypot through the virtual network interface associated
with that IP.

We support the OpenConnect VPN server using one of its open source implementa-
tions: ocserv. Our emulated network has a dedicated firewall host with IP 192.168.1.76
that is listening on default port 443.

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 36

3.4.2 Vulnerable Gateway Device

Gateway devices are used in ICS control network to translate industrial protocols, such
as back and forth from Modbus to Modbus/TCP, and extend the inter-device commu-
nication capabilities of the whole ICS (similar to NAT).

Our target hardware platform is Moxa OnCell IP gateway, that is able to connect to
the testbed over cellular networks using different technologies such as: GPRS, EDGE,
UMTS, and HSDPA. The target device has two configuration ports open: a telnet server
is listening on port 23, and a ssh server is listening on port 22. The ssh service is con-
figured with weak credentials: username is admin and password is admin. The telnet
service is configured with plaintext-based unencrypted authentication, with the same
weak credentials as the ssh server. Given such a configuration, the attacker is able to
get a command shell on the gateway device, that is directly connected to ICS internal
network.

We support ssh and telnet servers through sshd, and telnetd. Our emulated
network has a dedicated 3G Gateway host, with IP 192.168.1.77, that is listen-
ing on port 22 and port 23. The honeypot shell is chrooted, and the fake file system
mimics the one of the gateway device. In the ssh case, the chroot jail is specified di-
rectly in the sshd’s server configuration file, taking advantage of OpenSSH’s conve-
nient ChrootDirectory feature [46].

3.4.3 Network Emulation

The network emulation, and the virtual network hosts isolation is implemented by
Mininet using a low-level feature of the Linux kernel, called container-based virtual-
ization. Container-based virtualization takes advantage of Linux network namespaces,
and virtual Ethernet links, known as veth, to isolate subsets of processes. Each collec-
tion of processes is called a container, and it has a complete virtualized Linux network
stack associated (e. g. IP, ARP, and route tables). Each container interface is connected
to the software switch’s virtual interface through a veth. The net effect is an emulated
virtual network, this is the reason why the proposed honeypot runs in-a-Box.

The link shaping feature is implemented using another low level Linux kernel func-
tionality that can be accessed through the tc program. Tc allows to monitor, and ma-
nipulate the network traffic control setting for each active network interface. Indeed, it
is easy for use to set custom bandwidths, delays, and packet loss for each container in
our honeypot.

Finally, the proposed network emulation implementation is able to run any (indus-
trial) protocol stack available for Linux. The chapter focuses on EtherNet/IP (ENIP),
a modern object-oriented industrial protocol. ENIP is supported through the cpppo
Python module [104].

3.4.4 Physical Process and Devices Simulation

The honeypot is simulating a water treatment physical process, an HMI, and four PLCs
using a collection of python scripts. The PLCs logic mirrors the one described in the
water treatment testbed operational manual, with the same control flow acting on real

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 37

tag names, values, and types. Interlocks are simulated as well: for example, PLC1’s
logic depends upon values stored on PLC2, and PLC3.

The physical process simulation script simulates only the hydraulic part of the sys-
tem, in real-time. Technically, each water tank has an inflow pipe, and an outflow
pipe, both are modeled according to the equation of continuity from the domain of
hydraulics (pressurized liquids). Where present, a drain orefice is modeled using the
Bernoulli’s principle for the trajectories [126].

allows us to parametrize the simulation time of a water treatment simulation. We
are not using this feature in the honeypot because the attacker may realize that the
response time is too fast compared to the real water treatment. However, we used this
feature during other types of experiments (e. g. Man-in-the-Middle attacks) to generate
data faster than the usual. It is important to note that the speed-up factor is bounded
by the capability of the Linux kernel scheduler to manage concurrent processes. In our
case, the speed requirements are not very high as the physical process of the simulated
water treatment system is relatively slow.

3.4.5 Data Collection Subsystem

The data collection subsystem involves different types of data acquisition, that depend
upon the attacker activities inside the honeypot. In case of the vulnerable gateway
device, that is providing a shell to the attacker, we use standard shell logging tech-
niques: a log file is storing a set of records, and each record contains the timestamp,
the username, and the issued command. We are monitoring every user to deal with an
attacker able to escalate honeypot’s privileges. The log file is periodically copied to a
safe location, outside the honeypot.

For the vulnerable VPN server we use standard network traffic logging techniques.
Multiple tcpdump daemons are attached to the vulnerable network interfaces, and
they are generating pcap capture files. Eventually, these files can be post-processed
using more sophisticated network analysis tools, such as wireshark.

Additionally, the honeypot includes a software keylogger program, running with
root privileges, and masked from user-space memory. The keylogger is generating a
log file with all the entered keystrokes, and it is able to deal with more motivated at-
tackers, that for example might use obfuscation, and encryption techniques to transfer
their malicious payloads. This is a key difference between the effectiveness of a honey-
pot versus a (signature-based) NIDS. The NIDS is not able to recognize an encrypted
malware sent by the attacker to the target machine, in contrast the honeypot keylog-
ger will log the decryption phase of the malware on the target machine, detecting the
attack, and providing precious information about the attacker’s tactics.

3.4.6 Implementation Benefits and Risks

It is important to notice that a good implementation yields additional benefits, that
typically are not captured during the design phase. In this section we will present
some of the additional benefits provided by the MiniCPS framework.

In the problem statement, we target an honeypot usable both for research, and pro-
duction. MiniCPS is based on lightweight virtualization, and allows us to configure
the security level of the honeypot parametrically, at start-up time. By security level, we

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 38

mean the amount of vulnerabilities deliberately included in our services, indeed a re-
search honeypot will be pre-configured with a medium, or low security level, and a
production honeypot will be pre-configured with a high security level. For example
the latest version of an ssh server is installed in the high-security honeypot, and an
older vulnerable version is installed in the low/medium-security honeypot. One can
even think to patch a service, introducing trivial vulnerabilities, like default ssh admin
credentials, for the low-security honeypot. Additionally, if the attacker manages to ex-
ploit the high-security production honeypot, we will most probably discover a new
vulnerability, or a new exploitation technique.

MiniCPS allows to extend our honeypot from a virtual to an hybrid configuration.
As discussed in Section 3.3.1, an hybrid honeypot presents a mixture of real and vir-
tual devices and it is a cost-effective solution in the ICS context. Technically, a hybrid
honeypot can be categorized as an hardware-in-the-loop simulation, and this setting
increase the level of realism of the honeypot and also the complexity of its design and
implementation. We have access to spare PLCs in our lab, and in the future we plan
to perform experiments with a hybrid honeypot and compare the results against our
virtual honeypot.

MiniCPS allows to connect different ICS instances together and to a real network.
This feature enables the possibility to deploy a virtual ICS honeynet, that is a network
of (virtual) ICS honeypots that can be accessed over the Internet and can collaborate
to manage more advanced attack scenarios. For example, an honeynet might be able
to manage multiple attackers attacking at the same time, redirecting each attack to a
dedicated honeypot instance.

Finally, MiniCPS supports Software Defined Network (SDN) development natively [60].
In the default setting, the honeypot SDN controller is idle and it is not visible by the
attacker. Nothing prevents us to actively using the honeypot SDN controller. For exam-
ple, we may develop specific ICS control plane logics, able to extend the functionalities
of our honeypot, such as data analytics, deep packet inspection, and detection mecha-
nisms.

It is worth mentioning that the following implementation introduces the typical
risks of a high-interaction honeypot. For example, if the attacker is able to escalate
privileges inside the honeypot, we consider that honeypot useless (e. g. the attacker
may send false values to the data collection subsystem). The attacker may also be
able to penetrate the honeypot using a side channel, but this scenario is not captured
by the presented attacker model, indeed is out of scope for this chapter. Finally, we
understand that it is really difficult to protect the honeypot against a knowledgeable
attacker, but still the physical isolation between the honeypot, and the real ICS system
will protect the real ICS anyway.

3.5 Evaluation

3.5.1 Evaluation Context

In this section, we present a preliminary evaluation of our honeypot in the context of a
Capture-The-Flag (CTF) competition. The competition was a part of broader ICS secu-
rity event, called SWaT Security Showdown (S3), and hosted by Singapore University

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 39

of Technology and Design (SUTD) in July 2016.
CTF are educational cyber-security competitions, hosted, online and offline, by Uni-

versities, private companies, and non-profit organizations. There are two standard
types of CTF: jeopardy-style and attack/defense. A jeopardy-style CTF involves a
set of challenges, divided by category (e. g. reversing, exploiting, and cryptography),
and each challenge is presented with a short description, a number of clues, and an
amount of reward points. Each team scores points solving these challenges, and the
solution usually consists in a message to be entered in the CTF’s scoring system. An
attack/defense CTF involves a set of machines running vulnerable services, given to
the participating teams, and connected on the same LAN. To score points, each team
has both, to defend its services from the other teams (e. g. by patching a vulnerable
service), and to attack the services protected by the contender teams (e. g. by login as
admin on a webserver). Usually the given machines settings are not known a-priori by
the teams, this is a key point to augment the learning experience of the participants. In
both cases, the CTF stars and ends at prescribed time, and the team that scores most
points wins.

SWaT Security Showdown’s CTF involved different instances of our honeypot, one
for each participating team, pre-loaded with different CTF challenges. In particular, the
honeypots were simulating the hydraulic part of a subset of the Secure Water Treatment
(SWaT) testbed. SWaT is a state-of-the-art water treatment testbed located at SUTD,
consisting of six stages managed by six control devices. There are many interesting
details about the SWaT testbed, but they are out of scope, indeed they are omitted
from the discussion. To understand the remaining part of this section, it is sufficient to
know that: each honeypot included several simulated components, in particular: four
Programmable Logic Controllers (PLCs), a Human Machine Interface (HMI), two water
tanks (named Raw water tank, and Ultra-filtration tank), and a vulnerable gateway
device, that EtherNet/IP was the spoken industrial protocol, and that we connected the
simulated devices in a star topology, recreating one layer of the SWaT control network.
Notice that, we exposed only one vulnerable interface over the Internet, because S3’s
CTF already assumed that the attacker knew the (vulnerable) ICS entry point.

3.5.2 CTF and Honeypot Setup

In this section we will provide a brief description abut the CTF’s scoring system, and
the honeypots’ setup,

The CTF scoring system was implemented as a web application (webapp), using
the flask Python framework [153]. The webapp authentication was based on username
and passwords, and we used Let’s Encrypt to encrypt the webapp’s ingoing and out-
going traffic, via HTTPS [91]. Each challenge could be solved entering the flag using
an HTML form field. We decided to log all the scoreboard’s user input to understand
common errors, and detect brute-force attempts.

The honeypot setup was the most complex task. For network security reasons, we
decided to run all the honeypots “in the cloud”, using Amazon Web Services’ Elastic
Compute Cloud (AWS EC2) instances. Each honeypot ran on a single Linux kernel, us-
ing an m3-type EC2 instance. We set up a single instance, tested it, and then replicated
it, with minimal reconfiguration issues, to accomodate six teams.

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 40

We decided to use ssh as the vulnerable service on the gateway device, and we as-
sumed that the attacker already had obtained the credential to access it. That is why we
distributed a (different) private key for each team to login inside the honeypot as the
attacker user. Each instance was running two different ssh servers, with different
configurations. One server was used by us to access the virtual machine, and manage
the honeypot. The other server was running inside a Linux container, and the attacker
was chrooted to protect the honeypot file system and running processes. It is impor-
tant to notice that, both servers were running on port 22 on their respective networks,
however we had to use port forwarding (from port 2222 of the control network to port
22 of the honeypot network), to give the attacker a ssh connection inside the honeypot
network.

3.5.3 Challenges Descriptions

This section describes in detail the five challenges involving our honeypot, mimicking
a subset of the SWaT’s testbed, more information about the settings may be found in
Section 3.5.1. The challenges’ design followed common best practices of jeopardy-style
CTF: challenges were presented in increasing order of difficulty, and the solution of
challenge x was providing useful knowledge to solve challenge x+ 1.
Network warm up. The first challenge involves a basic understanding of the SWaT
network topology. The challenge description is: “Can you eavesdrop what PLC2 has
to say to PLC3?”. The goal of that challenge is to perform a passive Man-in-the-Middle
attack between PLC2 and, PLC3.
EtherNet/IP warm up. The second challenge involves some understanding of the Eth-
erNet/IP industrial protocol. The challenge description is: “cpppo can be used in the
testbed to communicate using the EtherNet/IP protocol. Can you read the README:2
tag.” In this case, the attacker has to understand which PLC stores the README:2 tag,
know its IP, and know how to query an EtherNet/IP server. Python’s cpppo module is
suggested because it is an easy to use library to do the job.
Overflow the Raw water tank. The third challenge involves a basic understanding of
a water treatment industrial control system. The challenge description is: “PLC1 is
controlling the raw water tank. It is reading the water level value addressed by the
tag LIT101:1. PLC1 is controlling a motorized input valve, addressed by MV101:1, that
can be turned ON/OFF using respectively 1/2. PLC1 is also controlling an output
pump, addressed by P101:1, that can be turned ON/OFF using respectively 1/2. The
maximum tank level in m from the ground is 1.2. The goal is to overflow the raw water
tank.” In this case, the attacker has to understand how to overflow a tank, based on a
provided list of sensors and actuators.
Denial of Service HMI. The fourth challenge involves a basic understanding of Denial-
of-Service (DoS) attacks. The challenge description is: “The HMI (set to manual mode)
is constantly sending to PLC3 the keep alive value 2. You can access this value using
the MITM:3 tag stored in PLC3. Can you change this value to 3? If you see that the tag
value has a stable 3 value, wait a little bit to get the flag.” In this case, the attacker has to
find a way to disrupt the communications between HMI and PLC3. It is not sufficient
for the attacker to write the value three in the MITM:3 tag.

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 41

Overflow the Ultra-filtration tank. The fifth challenge involves an advanced overflow
attack on the ultra-filtration tank. The challenge description is: “The HMI (set to man-
ual mode) is sending commands to PLC4. PLC4 is controlling the water level using
MV301:3 and P301:3. Both can be turned ON/OFF using respectively 1/2. You can
query LIT301:3 to discover the actual water level. The maximum tank level in m from
the ground is 1.2. The goal is to overflow the ultra-filtration tank.” In this case, the
attacker could not reuse the same techniques used for the third challenges, and he has
to find a smarter way to overflow the tank.

3.5.4 Challenges Results

In this section we present a number of interesting statistics gathered during the CTF
event. We anonymized the names of participating teams. Team 6 is explicitly excluded
from the analysis, because its members managed to exploit a side channel attack unre-
lated to the honeypot, which allowed them to bypass our honeypot challenges.

After the CTF event we post-processed the log files, and in Table 9.4 we present
several interesting results. Only one team was able to solve all the challenges, and the
average number of solved challenge per team was three. The majority of the teams used
traditional reconnaissance tools such as: nmap and ping, expected attack techniques
such as: Man-in-the-Middle attacks, and used cpppo for EtherNet/IP interaction, as
suggested by us in the challenge description.

TABLE 3.1: CTF Results Summary.

Teams Flags Distinct Cmds ExLOC Rec/Att Tools Most Used Tools*

Team 1 2 20 1074 3/1 {1, 2, 6, 8}
Team 2 5 30 2488 6/2 {1, 2, 3, 4, 5, 6, 7, 8}
Team 3 3 23 2045 5/2 {1, 2, 3, 4, 6, 7, 8}
Team 4 4 27 963 5/2 {1, 2, 3, 4, 6, 7, 8}
Team 5 1 3 52 1/0 {1}

ExLOC : Executed Lines Of Code
*{1: ettercap, 2: nmap, 3: netstat, 4: tcpdump, 5: tshark

6: ifconfig, 7: cpppo, 8: ping}

There are a number of lessons learnt by us during the CTF event, we will present
two of them. Firstly, crash recovery management. It is important to implement an au-
tomated, and reliable honeypot’s crash recovery sub-system, because an attacker may
break the honeypot in (unexpected) ways. In that case, the honeypot has to shutdown
gracefully, and restart after a reasonable time interval with the same settings. We ex-
perienced down-time issues because the attackers used simple bash scripts containing
infinite while loops, resulting in a DoS of some of our honeypots. We were not able to
automatically restart the targeted honeypots, and as result the offending teams had to
wait a couple of hours before restarting to attack the system.

The second important lesson was related to side channel attacks mitigation. We
believe that defending a system is generally more difficult than attacking it, because
the attacker has to find one vulnerable hole, however the defender has to protect ev-
ery holes (that he is aware of). During the CTF, we suffered a side channel attack on a

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 42

TABLE 3.2: Honeypot metrics evaluation summary.

Metric By design Implemented

Network

IP, MAC and netmask
Packet loss
Packet delay
Bandwidth
Topology
Common protocols
Industrial protocol G#
Advanced Traffic G#

Physical

Realistic math model
Sensor readings
Actuators driving
Control logic
Human operations G#
Advanced Process G#

Legend : full support, G#: partial support.

machine that was not running on any of our honeypots. The attack disclosed (among
other things) information about the event logistics, solutions to challenges, credentials
for a web service. For future events, we will take into account every detail of the config-
uration process, and ensure that we protect sensible data with access control and delete
unnecessary data from places accessible to the attacker. The last statement might sound
trivial, but it can be tricky to implement in practice, especially when multiple people
are configuring a complex virtualized system, running multiple services, connected
over the Internet.

3.5.5 Evaluation using Qualitative Metrics

In Table 3.2, we present an evaluation summary of our honeypot prototype. As fea-
tures, we use the metrics proposed in Section. 3.3.5. The table distinguishes between
features that are enabled by the honeypot design, and the ones implemented in the
evaluated prototype. For example, the honeypot design is capable of providing full
industrial protocol support. However, if there is only a partial implementation of the
protocol available for Linux (as in the case of EtherNet/IP) we have to indicate a partial
support in the Implemented column.

Table 3.2 shows that the implemented honeypot satisfies all the basic metrics, and
partially satisfies the more advanced ones (such the simulation of a human operation).
Furthermore, the implemented honeypot supports different types of attack ranging
from network attacks, such as: Man-in-the-Middle, port scanning, and service enumer-
ation, to physical process related ones, like tank overflows and DoS attacks on devices.

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 43

3.6 Related work

It has been observed over the years Internet-facing ICS devices are vulnerable to cy-
ber attacks and in respect to that security aspects of ICS devices have been discussed
in [188, 189], in particular the author presents attack statistics and a robust attribution
framework by deploying a honeypot architecture in the simulated virtualized ICS en-
vironment. We now review related work in detail, and position our work against it.
To the best of our knowledge, our work and the Conpot share the most features. We
summarize our findings in Table 3.3.

TABLE 3.3: Our Honeypot Features vs. Related Works.

Related Work R
ea

l
V

ir
tu

al
Lo

w
-I

nt
er

ac
ti

on
H

ig
h-

In
te

ra
ct

io
n

H
yb

ri
d-

In
te

ra
ct

io
n

R
es

ea
rc

h
Pr

od
uc

ti
on

Li
ve

Pr
oj

ec
t

Li
nk

Sh
ap

in
g

Li
gh

t-
w

ei
gh

t
Em

ul
at

ed
N

et
w

or
k

Our work
Scott et al. [159]
Buza et al. [29]
Holczer et al. [85]
Yin et al. [136]
Conpot [173]
Provos et al. [146]
Litchfield et al. [109]
Liljenstam et al. [107]

Design and Implementation of ICS honeypot. In [159], Scott proposes a mapping and
configuration of honeypot that is similar to our High-interaction Hybrid honeypot ar-
chitecture in several ways. In general, for honeypots to work effectively, there are two
major concerns. Firstly, it is needed to map the network attack surface of the target sys-
tem, and choose which services to mimic in the honeypot. Secondly, The configuration
and placement of the honeypot in the local network needs to ensure that controlling
and monitoring of attacks can be performed and attacker activities can be logged by a
secure channel.
PLC honeypot. On the topic of PLC honeypots, the authors of [29, 85] propose a high-
interaction honeypot PLC solution for secure network design. The proposed imple-
mentation involves exploration and inspection of all the PLCs and the services (HTTP,
HTTPS, ISO-TSAP, and SNMP) running on PLCs in a system that should be protected.
Those services are then implemented and integrated in a Linux based Virtualized sim-
ulated environment acting as a honeypot. In contrast to our work, the authors do not
consider any interactions with physical processes, and in general only network-based
interactions with the honeypot (no shell or VPN access).

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 44

3.6.1 Honeypot frameworks

IoTPOT. In [136], a low interaction honeypot framework was proposed. The authors
claim that telnet based attacks on IoT devices are increasing rapidly. The authors pro-
pose IoTPOT, a honeypot that emulates telnet interactions of IoT devices, in order to
attract and analyze attacks against various IoT devices running on different CPU archi-
tectures such as ARM, MIPS, and PPC. In contrast to IoTPOT, our proposed honeypot
is focusing more on ICS rather than IoT devices. Additionally, the proposed honeypot
does not focus on a specific protocol, such as telnet and related attacks, but it deals with
different industrial protocols and services, resulting in a much stronger attacker model,
and much larger attacker surface.
Conpot. Conpot [173] is an open source project for industrial control system honey-
pots. The honeypots can be classified as low-interactive server side honeypots, that
are implemented with following attributes in mind: a) Deployment of honeypot in net-
work should be easy b) Modification and extension of it can be done easily. As Conpot
is provided with a stack of several industrial protocols, it can interact with real devices
such as HMI and PLCS, and is capable of emulating complex infrastructures.

In contrast to Conpot, our framework allows high-interaction honeypots. In ad-
dition, the Conpot project does not cover the host and network virtualization aspects
of our system, or enable physical process simulation. Instead, Conpot is more related
to providing libraries and tools to build simulated ICS components. Unlike our work,
Conpot also provides analysis functionality of the communication and actions of the at-
tacker. For the future, we believe that we can strengthen the device simulation aspects
of our system with components from Conpot.
Honeyd. Honeyd [146] is an open source software framework to configure several
virtual host/honeypots in an existing network. The honeypots can be configured with
arbitrary services. The framework is useful for attack detection and to collect statistics
about malware attack. Unfortunately, development of Honeyd seems to have stopped
in 2013.
HoneyPhy. HoneyPhy [109] is physics-aware honeypot framework for Cyber-Physical
Systems (CPS). The proposed work has a broader scope (CPS are a superset of ICS),
and claims to provide realistic physical process, and devices simulation by means of
a hybrid configuration. In contrast, our honeypot framework is purely virtual, and
eventually can extended to a (more expensive) hybrid configuration.

3.6.2 Related ICS Simulation Frameworks

In [52], a framework similar to MiniCPS is proposed in the context of Software-Defined
Networking (SDN), and network intrusion detection for ICS. In particular, the pre-
sented system also uses Mininet [105]. The authors do not discuss the use of Mininet
framework in a honeypot setting, but they discuss about a virtual network layer built
on the top of physical process, to monitor the network status with high level of gran-
ularity. Furthermore, they demonstrate how smart grids could be made resilient in
catastrophic circumstances using SDN.

In [107], a simulator named RINSE (Real-time Immersive Network Simulation En-
vironment for Network Security Exercises) is developed with similar intent of the pro-
posed ICS honeypot. The simulator claims to provide realistic and scalable network

Chapter 3. Towards high-interaction virtual ICS honeypots-in-a-box 45

simulation by using multi-resolution traffic model, and routing protocols simulations.
An extension of RINSE is proposed in [107], where a stronger attacker model is intro-
duced. The new attacker’s capabilities include: Denial-of-Service, computer worms,
and similar large-scale attacks involving large numbers of hosts, and high intensity
traffic. In contrast to RINSE, the proposed ICS honeypot does not simulate the net-
work stack, but it uses network emulation to provide real packets and realistic net-
work characteristics, such as delay, packet loss, and bandwidth. Furthermore, RINSE
is developed as a training platform for network security, on the other hand the pre-
sented ICS honeypot is designed and implemented for both research and production
purposes.

3.7 Conclusion

In this work, we presented the design of a virtual, high-interaction, server-based ICS
honeypot, which aims to provide a realistic, cost-effective, and maintainable solution
to observe and capture the activities of the attackers. Based on that design and the
MiniCPS framework, we implemented parts of the SWaT testbed as honeypot.

To the best of our knowledge, the presented honeypot implementation is the first
academic work targeting EtherNet/IP based ICS honeypots, the first ICS virtual hon-
eypot that is high-interactive without the use of full virtualization technologies (such
as a network of virtual machines) and the first ICS honeypot that can be managed with
a Software-Defined Network controller.

We evaluated our implementation in the context of a capture-the-flag event targeted
to ICS, called SWaT Security Showdown. During the event, six teams attacked six in-
stances of our honeypot, producing interesting results. We were able to implement a
realistic scenario, run multiple services, and generate realistic traffic over the virtual
network. In the future, we plan to improve the crash management sub-system, the
EtherNet/IP support, the logging capabilities over the network, and the SDN support.

46

Chapter 4

Gamifying ICS Security Training
and Research: Design,
Implementation, and Results of S3

Keywords: Gamification, CTF, Education, Research, ICS.

4.1 Introduction

Recently, it has been widely argued that one of the fundamental issues in securing
industrial control systems (ICS) lies in the cultural differences between traditional IT
security and ICS engineering [157, 112]. Therefore, education has been advocated as a
means of bridging the gap between these cultures [111, 112]. However, recent surveys
indicate that although general IT security education efforts have risen in ICS, there is
still need for more targeted education combining both security and ICS specific knowl-
edge [90].

Typically, those willing to do research on ICS security are facing severe problems,
such as lack of understanding of a real ICS, and the inability to test (new) attacks and
countermeasures in a realistic setup. ICS testbeds constitute a convenient environment
to study ICS security, however their deployment is rare because of many (reasonable)
costs, such as infrastructure and manpower costs [30, 184]. Another common issue in
ICS security is resulting from the intrinsic inter-disciplinary nature of the subject. It
is difficult to bring together people from different expertise domains, such as control
theory, information security, and engineering.

In this work we propose a solution to the ICS security education problem, based
on gamified security competitions. By education we mean both training of new ICS
security professionals, and helping researchers to advance the state-of-the-art of ICS
security. Our gamification idea evolves around four key points. Firstly, the competi-
tion has to be domain-specific (targeted education). Secondly it has to involve people
from academia and industry possibly with different expertises (addresses the cultural
differences). Thirdly, the contest has to be fun to play to motivate the participants (gam-
ified). Finally it has to present interaction with real ICS components using real ICS tools
(realistic attacks and countermeasures).

The result of our efforts is the SWaT Security Showdown (S3), a Capture-The-Flag
(CTF) targeted to industrial control systems security. This chapter focuses on the de-
sign, implementation and results from the first S3 edition of 2016. S3 was hosted by

Chapter 4. Gamifying ICS Security Training and Research with S3 47

our institution the Singapore University of Technology and Design. S3 is divided into
two phases: an online training CTF, and a live attack-defense CTF. During the online
phase the attackers participated in a Jeopardy-style CTF. The online CTF challenges in-
cluded novel ICS-specific categories, involving for example real-time interactions with
ICS simulations, and remote access and programming of real ICS devices. During the
live CTF both the attacking and defending teams had access to our water distribution
testbed (SWaT). They deployed a wide range of attacks, while two academic attack
detection systems were in place.

We summarize our contributions as follows:

• We identify several issues that currently hinder industrial control systems secu-
rity education and research.

• We propose a solution to address those issues, focusing on a gamified Capture-
The-Flag (CTF) competition, using simulated and real ICS infrastructures.

• We present the design and implementation of the SWaT Security Showdown (S3)
competition. S3 uses a combination of Jeopardy-style CTF and attack-defense
CTF to provide a novel and hands-on learning experience for ICS security profes-
sionals.

This work organized as follows: in Section 4.2, we provide brief background on
industrial control systems (ICS), the Secure Water Treatment testbed, and Capture-The-
Flag events. In Section 4.3, we present the current challenges for ICS security education
and research, our problem statement, and the design of S3. The details about S3 online
and live phases are presented in Section 4.4 and Section 4.5. Related work is summa-
rized in Section 4.6, and we conclude the chapter in Section 4.7.

4.2 Background

4.2.1 Industrial Control Systems Security

Industrial control systems (ICS) are autonomous systems composed of heterogeneous
and interconnected devices. ICS are deployed to monitor and control different types of
industrial processes, such as critical infrastructures (water distribution and treatment),
and transportation systems (planes and railways).

ICS security is a major challenge for many reasons. Firstly, the complexity and di-
versity of devices involved in an ICS increases the attacker surface. For example, an
attacker might attack the cyber-part, the physical-part or both parts of the ICS. Ad-
ditionally, modern ICS are embracing standard Internet communication technologies,
such as TCP/IP based industrial protocol, resulting in ICS that can be controlled (and
attacked) from the Internet. Arguably, threats to ICS focus on impacting the physical
world, instead of attacks on the confidentiality and the integrity of the information.
As such, the damage by those attacks is expected to cause high financial and human
costs due to destroyed property and decreased operational availability of commercial
systems. Famous examples of high-impact attacks on ICS are the recent attack on the
Ukraine power grid [32], the Stuxnet worm [59], and the attack on a wastewater treat-
ment facility in Maroochy [163].

Chapter 4. Gamifying ICS Security Training and Research with S3 48

L0 NetworkL0 NetworkL0 NetworkL0 NetworkL0 Network

HMI

SCADA Historian

PLC1 PLC1b

PLCPLC

Process 1

PLC2 PLC2b

PLCPLC

Process 2

PLC3 PLC3b

PLCPLC

Process 3

PLC4 PLC4b

PLCPLC

Process 4

PLC5 PLC5b

PLCPLC

Process 5

PLC6 PLC6b

PLCPLC

L0 Network

Process 6

Remote IO Remote IO Remote IO Remote IO Remote IO Remote IO

Sensor

42.42

Sensors

RIO

Actuators

Sensor

42.42

Sensors

RIO

Actuators

Sensor

42.42

Sensors

RIO

Actuators

Sensor

42.42

Sensors

RIO

Actuators

Sensor

42.42

Sensors

RIO

Actuators

Sensor

42.42

Sensors

RIO

Actuators

Layer 1 Network

DMZ
Network

HMI

HMI

IDS

Internet

Switch

FIGURE 4.1: The Secure Water Treatment (SWaT) testbed architecture.

4.2.2 Secure Water Treatment (SWaT) Testbed

For the experimental part of this work we target the Secure Water Treatment (SWaT).
SWaT is a state-of-the-art water treatment testbed available at our institution since
2015 [119]. SWaT is composed of six stages and includes advanced filtering equip-
ment such as: ultrafiltration and reverse osmosis sub-systems. We now briefly describe
the six stages of SWaT:

1. Supply and Storage pumps raw water from the source to the Raw water tank.
2. Pre-treatment chemically treats raw water controlling electrical conductivity and

pH.
3. Ultrafiltration (UF) and backwash purifies water using ultrafiltration membranes,

collects ultra-filtrated water in the Ultra-filtration tank, and periodically cleans
the UF membranes.

4. De-Chlorination chemically and/or physically (UV light) removes chlorine from
ultra-filtrated water.

5. Reverse Osmosis (RO) purifies water using RO process, separates the result into
permeate (purified) and concentrate (dirty) water.

6. Permeate transfer and storage store permeate water into the RO permeate tank.
Figure 4.1 shows a schematic view of SWaT architecture. Starting from the bottom

we can see six gray boxes representing the six water treatment stages. Each stage in-
volves two Programmable Logic Controllers (PLCs) configured in redundant mode,
and a Remote Input-Output (RIO) device that interfaces the PLC with the sensors and
actuators. The field networks (Layer 0) use an Ethernet ring topology. The rings are
established and maintained using the device level ring (DLR) protocol. The data is ex-
changed using EtherNet/IP over UDP. Every PLC is connected to the control network
(Layer 1). The control network has a star topology, and it includes the PLCs, a SCADA
server, an HMI, and a historian server. Other network devices (e. g. in the DMZ net-
work) access the SWaT control network through an industrial firewall. EtherNet/IP
over TCP is used in the control network to carry data about commands, sensors, and
actuators. EtherNet/IP is an object oriented industrial protocol. In particular, it is an
implementation of the common industrial protocol (CIP) [129] on top of the TCP/IP
protocol stack.

Chapter 4. Gamifying ICS Security Training and Research with S3 49

4.2.3 Capture-The-Flag (CTF) Events

Capture-The-Flag (CTF) events are cyber-security contests organized by universities,
private companies and non-profit organizations. CTF competitions can be classified in
two categories: Jeopardy-style and attack-defense. A Jeopardy-style CTF usually is hosted
on the Web, and includes a set of tasks to be solved divided by categories (e. g. cryptog-
raphy, exploitation and reverse engineering). Each task is presented with a description,
a number of hints and an amount of reward points. The solution of a challenge com-
prises finding (or computing) a message (the flag) with a prescribed format, such as
ctf{foo-bar}, and submitting it to the CTF scoring system. An attack-defense CTF,
also called red team (the attackers) blue team (the defenders), is organized both offline
and online. Each team is given an identical virtual machine containing some vulnera-
ble services. The teams are connected on the same LAN, and their goal is both to have
an high service runtime and to tamper with the services of the other teams. For exam-
ple, finding and exploiting a vulnerable service has two benefits: it allows a team to
patch its service to be more resilient to the attacks from the other teams, and to attack
other teams vulnerable service. Both Jeopardy-style and attack-defense, CTF have time
constraints (e. g. increase level of realism), and the team who scored most points wins
the competition.

4.3 Gamifying Education and Research on ICS Security

We start this section by summarizing current challenge statements from academia and
industry, and we leverage them to set the problem statement of this work. Then, we
propose number of solution approaches. We focus on one of them, and discuss how it
could be implemented.

4.3.1 ICS Current Security Challenges

In recent years, experts have argued extensively about the criticality of securing Indus-
trial Control Systems (ICS)s. Many have pointed out that one fundamental challenge
in achieving this task lies in cultural and educational differences between the fields of
(traditional) information security and ICS security. According to Schoenmakers [157]:
“Differences in perspectives between IT and OT specialists can cause security issues for control
systems. It is important for organizations to keep in mind that different values between groups
can influence the perception of issues and solutions.”, which emphasizes the cultural clashes
still existing between traditional IT security and ICS specialists.

Education and training have been advocated to bridge this gap, but there still work
to do in this domain. Luijif [111] describes the security of ICS as a societal challenge,
and recommends:“Many of these challenges have to be overcome by both end-users, system
integrators and ICS manufacturers at the long run: (. . .) proper education and workforce de-
velopment”.

Despite the problem of education being widely acknowledged, according to a recent
report published by SANS Institute [90]: “It is clear from our results that most of our
respondents hold security certifications, but the largest number of these (52%) is not specific
to control systems (. . .) IT security education is valuable, particularly with the converging
technology trends, but it does not translate directly to ICS environments.”

Chapter 4. Gamifying ICS Security Training and Research with S3 50

In order to effectively improve the security of ICS it is thus crucial to educate re-
searchers and practitioners such that they are able to understand the subtleties and
domain-specific requirements and constraints of security and ICS. As recently pointed
out by Luijif in [112]: “(. . .) ICS and (office) IT have historically been managed by separate
organizational units. ICS people do not consider their ICS to be IT. ICS are just monitoring
and control functions integrated into the process being operated. ICS people lack cyber security
education. The IT department, on the other hand, is unfamiliar with the peculiarities and limi-
tations of ICS technology. They do not regard the control of processes to have any relationship
with IT. Only a few people have the knowledge and experience to bridge both domains and
define an integrated security approach. Organizations that have brought the personnel from
these two diverse domains together have successfully bridged the gap and improved the mutual
understanding of both their IT and ICS domains. Their security posture has risen considerably.”

4.3.2 Problem Statement

With the challenges from Section 4.3.1 as a high-level goal in mind, in the following we
discuss the problem statement and the proposed solutions.

Based on the literature and our experience, we think that traditional IT (security)
professionals need more information about the following topics:

• Common device classes, network topologies, and protocols used in ICS.
• Design methodologies best-practices and operational objectives in ICS.
• Physical processes specifications.
• Control theory models.
Furthermore, training for ICS (security) professionals can be beneficial in the areas

of:
• Common “modern” Internet communication technologies (Ethernet, IP, TCP, UDP,

NAT).
• Common security challenges and standard solutions (MitM attacks, TLS, firmware

and software update schedules).
• Standardization and specifications related to security products.
Problem statement How can we create an impactful educational experience that

addresses the aforementioned gaps?

4.3.3 Proposed Solution Approaches

We now propose a number of approaches to alleviate the outlined problems. We then
present a solution that covers several of the proposed approaches.

1. A set of common use cases for ICS. In particular, the use cases would include
a fictional or real physical process and details on the communication network
topology.

2. Interactive ICS testbeds, that allow users to familiarize themselves with the con-
trol devices and protocols used and interact with the underlying physical process.

3. Practical training on ICS and information security.
4. Testing of security solutions through external parties, and standard certifications.

Chapter 4. Gamifying ICS Security Training and Research with S3 51

4.3.4 Capture the Flag

FIGURE 4.2: Popular CTF competitions.

Capture-The-Flag (CTF) are cyber-security contests organized worldwide by Uni-
versities, private companies and non-profit organizations. Figure 4.2 presents some
of the most popular CTF such as DEFCON, iCTF, and Google CTF. CTF events can
be classified as: jeopardy-style or attack-defense. A jeopardy-style CTF usually is hosted
online and involves a set of tasks to be solved divided by categories, such as cryptog-
raphy and reverse engineering. Each task is presented with a description, a number
of hints and an amount of reward points. The solution of a challenge involves finding
(or computing) a message (the flag) with a prescribed format, such as CTF{my_flag},
and submitting it to the CTF scoring system. An attack-defense CTF, also called Red
(attacker) team/Blue (defender) team, is organized both offline and online where each
team is given an identical virtual machine containing some vulnerable services. The
teams are connected on the same LAN, and their goal is both to have a high service
runtime and to penetrate the services of the other teams, e. g. finding and exploiting
a vulnerable service has two benefits: it allows a team to patch a service to be more
resilient against adversarial attacks, and to attack other teams vulnerable service. Both
jeopardy-style and attack-defense, CTF have time constraints (realistic scenario) and
the team who scores most points wins the competition. The presented work uses both
online jeopardy-style and live attack-defense CTF styles to augment the learning expe-
rience.

Such events attract the attention of both industrial and academic teams and cur-
rently enjoy increasing popularity, as indicated by an established website in this com-
munity, listing CTF competitions worldwide [45]: this website lists 100 events being
held worldwide, some of them with a long tradition such as the hacker-oriented DEF-
CON CTF [47] and the academic-oriented iCTF [38]. Of the 10,000 teams listed in CTF
time in 2016, some are academic and others are composed of a heterogeneous mixture
of security enthusiasts, many of them security professionals.

CTF-like gamified security competitions are expected to help the ICS security com-
munity in many ways [54, 147, 180]. A CTF is an hands-on learning experience and
it can be used as an educational tool, research tool, and as an assessment tool. Ide-
ally, both recruiters and candidates from academia and industry benefit participating
in CTF events as they exercise key aspects of the ICS security domain such as knowl-
edge of security (recent) threats, teamwork, analytical thinking, development of (new)

Chapter 4. Gamifying ICS Security Training and Research with S3 52

skills, and working in a constrained environment. The gamification aspect of a CTF al-
lows the participant to express his or her full potential, e. g. attack/defend without fear
of consequences or bad marks. CTF events have already been proposed as a means to
enhance security education and awareness [54, 147, 180]. Although such events cover
a wide range of security domains, to the best of our knowledge they do not include so
far the security of ICS.

4.3.5 The SWaT Security Showdown

In this work, we focus on the aspect of training and validation of applied security skills
for industry professionals and researchers. Gamification in education has been advo-
cated as a means to enrich the learning experience [98]. In particular, within IT security,
the implementation of CTF-like competitions have been argued to be advantageous for
education and training [180]. Inspired by the gamified nature of CTF, we propose the
following approach.

Our goal is to create a realistic environment where participants are encouraged
to think out of the box. In real-life ICS settings, several intrusion detection mecha-
nisms are in place to safe-guard critical operations. A successful attacker would have
to bypass such systems in order to pose a threat, and simulating such settings would
stimulate a participant’s ingenuity to attempt creative attacks. On the other hand, if
successful, such attacks will potentially unveil limitations of the defense mechanism.
Therefore, we propose to divide participants in a training event into two categories:
participants interested in developing defenses for ICS (defenders) and participants in-
terested in testing the security of ICS (attackers).

In order to get the most out of an interaction with a real ICS testbed, it is important
to learn fundamental concepts of ICS security. However, this learning phase should be
as hands-on and gamified as possible. To this extent, we propose an on-line training
phase, where attackers get familiar with ICS concepts and a particular critical infras-
tructure by means of a jeopardy-style CTF. Different from traditional CTFs, the chal-
lenges are tailored to highlight ICS concepts and use realistic simulations of ICS net-
works and remote interaction with ICS hardware. In this phase, attackers also should
be aware of the internal workings of common defense mechanisms in place, and docu-
mentations there-of are shared with them.

After this preparation, in a live phase attackers phase interaction with a live system
that is being monitored by defenders. In this setting, attackers should have concrete
goals to achieve (or flags in CTF jargon), and their scoring should be influenced by the
number of defenses triggered during their attack. In order to motivate attackers to
perform more creative and difficult attacks, different attacker models can be suggested
to them (i.e. insiders with administration capabilities, outsiders with network access)
and the scoring can be adjusted according to the attacker model chosen.

Finally, participants will have access to statistics on their performance based on a
unified scoring system taking into account both phases. Attackers will benefit from this
experience since in order to solve the on-line and live challenges they will have to go
through several of the topics discussed in the previous subsection. On the other hand,
defenders will benefit by putting their solutions to the test against creative attackers.

We have implemented the proposed concepts at our institution in 2016, under the
name SWaT Security Showdown. In the following two sections, we present the two

Chapter 4. Gamifying ICS Security Training and Research with S3 53

main phases of that event, which represent the two target systems we introduced ear-
lier: a) online challenges using questions and simulated systems, and b) live events us-
ing a real physical ICS. Due to organizational constraints, and in order to maximize the
learning experience, we decided to limit the participants to SWaT Security Showdown
to selected invited teams from academia and industry, both for attacker and defender
roles, for a total of 12 invited teams (6 attackers, 6 defenders, of which 3 academic and
3 industrial teams respectively). Teams were not limited in size, but only a maximum
of 4 members could participate physically in the live event whereas remaining team
members could join remotely.

4.4 Online phase of S3

In this section we will present the SWaT Security Showdown online event, and the
details about its setup, and presented challenges. We will describe more in detail three
set of challenges from the MiniCPS, Trivia and Forensics categories. We conclude the
section with a summary of the collected results.

4.4.1 Online phase Setup and Challenges

The SWaT Security Showdown online phase involved six teams of attackers, three from
industry, and three from academia. We presented a total of twenty challenges in prepa-
ration for this phase, and we offered to each team a limited time to access to Secure
Water Treatment, and the required documentation to get familiar with the SWaT and
EtherNet/IP. We organized two sessions, each one 48 hours long, where three teams at
a time attempted to solve the challenges for a total amount of 510 points.

The S3 online phase was structured as a jeopardy-style CTF, and did not require
physical access to the SWaT. The main goal of this phase was to provide an adequate
training to the attacker teams (third goal from Section 4.3.3). Please refer to Section 4.3.4
for more information about Capture-The-Flag events.

Table 4.1 summarizes the proposed tasks. We presented twenty tasks divided into
five categories: MiniCPS, Trivia, Forensics, PLC, and Misc, for a total of 510 points.
Each category exercised several ICS security domains, such as Denial-of-Service, and
Main-in-the-Middle attacks. It is important to notice that categories such as MiniCPS,
Trivia, and PLC are novel in the domain of traditional jeopardy-style CTFs. Following
CTF design best-practices we presented the challenges of each category in increasing
order of difficulty e. g. solving challenge x helped to solve challenge x + 1, and when
necessary, we gave hints e. g.: you could use toolx to accomplish a certain task. In
general, we used the online event as a training session to prepare the attacker teams for
the S3 live event that is described in Section 4.5.

We built a Webapp to run the S3 scoring system using the flask Python frame-
work [153] (Figure 4.3 shows S3 online challenges’ web page). The web pages were
served over HTTPS, using Let’s Encrypt [91], and a basic brute-force attempts detec-
tion mechanism based on user input logging was put in place on the backend side. A
dedicated web page was showing a live chart with the scores from all the teams. We
offered live help with two different channels: an IRC channel on freenode.org, and
via email. The following is an example of user interface interaction with our Webapp:

Chapter 4. Gamifying ICS Security Training and Research with S3 54

TABLE 4.1: SWaT Security Showdown Online challenges summary: 20
tasks, worth 510 points.

Category Tasks Points Security Domains

MiniCPS 5 210 network mapping, DoS, reconnaissance, MitM attacks
in ENIP, tampering, tank overflow

Trivia 6 45 SWaT’s physical process, devices and attacks

Forensics 4 105 packet inspection, processing and cryptography

PLC 3 60 ladder logic, code audit and development

Misc 2 90 web authentication, steganography

member of team A logs in to S3’s Webapp (using the provided credentials), she navi-
gates to challenge X’s Web page, then enters the flag on an HTML form. If the flag is
correct, she receives N reward points, otherwise a submission error appears on screen.

In the following, we focus on the tasks related to MiniCPS, Trivia, and Forensics
categories, since they better illustrate the novel nature of the challenges proposed, and
then we will present a summary of the results from the online event.

4.4.2 MiniCPS Category

The online phase presented five challenges in the MiniCPS category. MiniCPS is a
toolkit for Cyber-Physical System security research [10]. MiniCPS was used to “realisti-
cally” reproduce (simulate) part of the Secure Water Treatment, including the hydraulic
physical process, the devices and the network. Each simulated instance accessed by the
attackers’ teams was running on Amazon Web Services Elastic Compute Cloud (AWS
EC2), using an m3-type virtual machine (one instance per team).

Figure 4.4 shows the simulation setup of a single instance, that was replicated for all
the six teams. Each attacking team was provided with the credential to access an SSH
server running on a simulated chrooted gateway device. The attacker had access to the
emulated virtual control network that used the same topology, addresses (IP, MAC, net
masks), and industrial protocol (EtherNet/IP), of the SWaT.

The attacker could interact with other simulated SWaT’s devices in the star topology
(four PLCs and an HMI), and alter the state of the simulated water treatment process
affecting the two simulated water tanks (the Raw water tank and the Ultra-filtration
tank). For example, an attacker might send a packet containing a false water level
sensor reading of the Ultra-filtration tank to the HMI, or a packet that tells to PLC2
to switch off the motorized valve, that controls how much water goes into the Raw
water tank. As a side note, Figure 4.4’s setup is part of an internal project involving the
development of novel honeypots for ICS [7].

The following five paragraphs summarize each of the MiniCPS challenges, with the
attacker’s goals and a reference solution:
Network warm up. The goal of the first challenge is to perform a passive ARP-poisoning
MitM attack between PLC2 and PLC3. The attacker has to perform a network scanning
to discover the hosts addresses and then use ettercap to read the flag on the wire.

Chapter 4. Gamifying ICS Security Training and Research with S3 55

FIGURE 4.3: S3 online challenges’ web page.

EtherNet/IP warm up. The goal of the second challenge is to read the flag stored in
PLC2’s EtherNet/IP server, and addressable with the name README:2. The attacker
has to understand which PLC owns the README:2 tag, and how to use cpppo, the
suggested EtherNet/IP’s Python library [104].
Overflow the Raw water tank. The goal of the third challenge is to overflow the sim-
ulated Raw water tank. The attacker has to understand the simulated dynamic of a
water tank e. g. who drives inflow and outflow, and tamper with the correct actuators
to increase the water level above a fixed threshold. Some hints were given to explain
the binary encoding e. g. usem/n to switch ON/OFF a water pump and OPEN/CLOSE
a motorized valve.

FIGURE 4.4: MiniCPS-based setup for online challenges.

Chapter 4. Gamifying ICS Security Training and Research with S3 56

Denial of Service HMI. The goal of the fourth challenge is to disrupt the communica-
tion (Denial-of-Service) between the HMI and PLC3, and then change a keep-alive tag
value to 3 on PLC3 EtherNet/IP’s server. In normal working condition the keep-alive
tag is periodically set by the HMI to 2. Given the knowledge acquired from the previ-
ous three challenges, the attacker has to perform an active MitM attack that drops all
the packets between the HMI and PLC3. Notice that, it is not sufficient to just write the
required keep-alive tag value on PLC3 EtherNet/IP’s server.
Overflow the Ultra-filtration tank. The goal of the fifth challenge is to overflow the
Ultrafiltration water tank. The attacker has to reuse a combination of the previously
used techniques to set up an active MitM attack using custom filtering rules e. g. use
ettercap and etterfilter.

4.4.3 Trivia Category

The online phase presented six challenges in the Trivia category. The Trivia challenges
were intended for the attackers to understand the plant structure, behavior, and the
defense mechanisms. The knowledge gained from these challenges is expected to be
of use to the attackers in other phases of the event. In the remainder of this section,
we briefly describe the six challenges, their goals, and the steps needed to capture the
flags.

The trivia challenges can be divided into two types, the first type involved the
knowledge on SWaT, and the second type involved research papers on SWaT.
Knowledge on SWaT. Three challenges fall under this category. The goals of these
challenges are to focus on the physical process of SWaT [119], the control strategy of
SWaT, and the set points of the sensors and actuators. Following are the details regard-
ing the challenges.

Trivia 1 The goal of the first challenge is to identify the analyzer that is used by the
PLCs to control a specific dosing pump. In order to identify the device, the participant
has to understand the control strategy of the particular dosing pump. As the PLC uses
a number of different inputs to control the dosing pump, the participant has to trace
the signals and identify the particular analyzer.

Trivia 2 The goal of the second challenge is to find out the set point that triggers
the start of the backwash process. During the filtration process, small particles clot the
Ultrafiltration membrane. To remove them and clean the Ultrafiltration membrane, a
backwash process is started after reaching a specific threshold. In order to answer this
challenge, the participant needs to revise and understand the backwash process.

Trivia 3 The goal of the third challenge is to identify the set point of the hardness
analyzer used by a PLC to shut down the RO filtration. The hardness analyzer mea-
sures the water hardness in SWaT. The set point is a desired value of a particular sensor
which is used by the PLC to control the plant. In the current scenario, when hardware
analyzer exceeds desired value, PLC shuts down the RO filtration. In order to answer
this challenge, attacker should understand the set points and control strategy of the RO
process.
Research papers on SWaT. The remaining three challenges fall under this category. The
goals of these challenges are to raise awareness about ICS attacks techniques and their

Chapter 4. Gamifying ICS Security Training and Research with S3 57

classification in the context of SWaT. We selected the following three papers: [1, 96, 2]
as reference attack vectors targeting ICS. Following are the details of those challenges.

Trivia 4 The goal of this challenge is to familiarise the attacker with possible attacks
on SWaT and potential impact of those attacks on SWaT. We provided a research pa-
per [1] that presents an experimental investigation of cyber attacks on an ICS. In order
to answer the challenge, the participant needed to read the paper and understand it.

Trivia 5 The goal of this challenge is to familiarise the participant with a security
analysis of a CPS. We provided another research paper [96] that presented a security
analysis of a CPS using a formal model. In order to answer the challenge attacker
should read the paper and understand it.

Trivia 6 The goal of this challenge is to familiarise the attacker with multi-point
attacks on ICS. We provided a third research paper [2] that discussed multi-point at-
tacks. A multi-point attack leverages more than one entry point, e.g, two or more com-
munications links, to disturb the state of an ICS. In order to answer the challenge, the
participant needed to read the paper and understand it.

4.4.4 Forensics Category

The forensics challenges focused on network capture files, in particular pcap files, that
are easy to process using programs such as wireshark and tcpdump. The participant
had to learn how to process and extract information from a file containing pre-recorded
network traffic from an ICS. The target industrial protocol was EtherNet/IP. We now
provide details on three of the four challenges.
Identify the ICS hosts. The goal of the first challenge is to perform an analysis of
the ICS hosts inside a captured ICS network traffic. To achieve that goal, the attacker
should search for the hosts inside the captured traffic, classify them based on their IP
addresses, identify whether a host is inside the ICS network or not and enumerate
them.
Finding the poisoning host. The goal of this challenge is to search for a host that has
performed an ARP poisoning Main-in-the-Middle attack, inside a captured network
traffic. Then, the attacker will identify the start point and end point of captured ARP
poisoning attack inside the captured network traffic. As an example, the flag of this
problem will be the start and end TCP sequence number in the form of ascflag{A-B},
where the A is the starting TCP sequence number and B is the ending TCP sequence
number.
Understanding the CIP protocol structure. The goal of this challenge is to find a par-
ticular pattern inside the payload of CIP messages. In particular, the attacker has to
recognize that a CIP payload contains encrypted data and then he has to decrypt it. So,
the attacker can decrypt the ciphertext by performing a XOR it with a key included in
the payload or performing a brute-force.

4.4.5 Results from the Online phase

Table 4.2 presents the final scores of each team, the number of captured flags, and an
estimation of the time spent playing, computed as the difference between the last and
the first flag submitted by a team. As we can observe from the table, two teams were

Chapter 4. Gamifying ICS Security Training and Research with S3 58

able to fully complete all tasks, with Team 6 being by far the most efficient. On average
teams spent 25.67 hours to solve the challenges (53% of the maximum of 48 straight
hours), with a standard deviation of 13.06 hours. The teams scored an average of 268.83
points (52.7% of the maximum of 510). We believe that both the time invested and the
percentage of challenges solved shows a notable investment in the game, and provides
evidence on the engagement generated by the gamification strategy. In addition, we
note a correlation between the number of hours invested, and the points achieved. In
fact, when the outlier (Team 6) is removed, there is a 0.97 Pearson correlation coefficient
(PCC) between time spent and points achieved.

TABLE 4.2: S3 Online Results summary. Category names:
MCPS=MiniCPS, T=Trivia, F=Forensics, P=PLC, M=Misc

Flags per category
Team MCPS T F P M Σ Flags Score Time

T1 2 6 4 0 1 13 250 30h

T2 5 6 4 3 2 20 510 44h

T3 0 4 2 0 1 7 86 27h

T4 4 4 2 0 0 10 161 28h

T5 0 4 2 0 1 7 66 21h

T6 5 6 4 3 2 20 510 4h

To conclude the online event, we believe that the gamification factor played an im-
portant role. Gamification helped us to combine different categories in an unified ICS
security theme, to motivate the attacker teams to do their best to get the maximum
points, and to implicitly train them for the upcoming live phase.

4.5 Live phase of S3

As discussed in Section 4.3, the goal of the online phase was to prepare teams for the
live phase of S3. In this section we will present the SWaT Security Showdown live
event, and the details about its setup, and scoring system. Afterwards, we will de-
scribe two of the academic detection mechanisms, ARGUS and HAMIDS, that were
used during the event. We conclude the section providing a summary of the collected
results.

Chapter 4. Gamifying ICS Security Training and Research with S3 59

4.5.1 Live phase Setup

The live phase of S3 was held at SUTD over the course of 2 days in July 2016. All six
attacker teams that participated in the online phase were invited. Each team was as-
signed a three hour timeslot, in which it would have free access to SWaT to test and
deploy a range of attacks, taking advantage of the knowledge gained during the online
phase presented in Section 4.4. In addition, teams were able to visit the SWaT testbed
for one working day, to perform passive inspection before the event to prepare them-
selves.

The main goal of the live phase was two-fold: firstly, the teams would be able
to learn more about an actual ICS and its security (second and third goals from Sec-
tion 4.3.3). Secondly, we would be able to test a number of (internally developed) detec-
tion systems that were deployed in SWaT to evaluate and compare their performances
(fourth goal from Section 4.3.3).

4.5.2 Scoring and Attacker Profiles

We designed the scoring system for the live phase with the following goals:
• Incentivise more technically challenging attacks.
• De-incentivise re-use of same attack techniques.
• Provide challenges with different difficulty levels.
• Relate the attack techniques to realistic attacker models.
• Minimize damages to the participants and the actual system.
We now briefly summarize the scoring system we devised. In general, points were

only be awarded if the attack result could be undone by the attacker (to minimize the
risks of permanent damages).

Equation 4.1 defines how to score an attack attempt:

s = g ∗ c ∗ d ∗ p (4.1)

With s being the final score, g a value representing the base value of the goal, c a
control modifier to value the level of control the attacker has, d a detection modifier,
and p the attacker profile modifier. Most modifiers were in the range [1, 2], while the
base value for the targets was in the range [100, 200].

We now describe in detail the four modifiers from Equation 4.1. Goals could be
chosen from two sets: physical process goals and sensor data goals.
Physical Process Goals g. Control over actuators, and physical process (water treat-
ment):

• 100 points: Motorised Valves (open/close/intermediate).
• 130 points: Water Pumps (on/off).
• 145 points: Pressure.
• 160 points: Tank fill level (true water amount, not sensor reading).
• 180 points: Chemical dosing.

Sensor Data Goals g. Control over sensor readings at different components:
• 100 points: Historian values.
• 130 points: HMI/SCADA values.
• 160 points: PLC values.

Chapter 4. Gamifying ICS Security Training and Research with S3 60

• 200 points: Remote I/O values.
Control modifiers c. The control modifier determined how precise control the attacker
had. As guideline the modifier was 0.2 if the attacker could randomly (value and time)
influences the process, up to 1.0 if the attacker could precisely influence the process or
sensor value to a target value chosen by the judges.
Detection modifiers d. Not triggering a detection mechanism while the attack is exe-
cuted would increase the detection modifier, using the following formula: 2−x/6, with
x the number of triggered detection mechanisms.
Attacker profile modifiers p. For each attack attempt, the attacking team had to inform
the judges about the chosen attacker model before the attack is started. The overall idea
is that a weaker attacker profile would yield a higher multiplier. The attacker profiles
were based on [152] and the higher is the modifier the weaker is the attacker model. The
SWaT Security Showdown live event used three attacker profiles: the cybercriminal, the
insider, and the strong attacker.

The cybercriminal model had a factor of 2. The cybercriminal was assumed to have
remote control over a machine in the ICS network, and was able to use own or stan-
dard tools such as nmap, and ettercap. The cybercriminal did not have access to
ICS specific tools, such as Studio 5000 (IDE to configure SWaT’s PLCs), or access to
administrator accounts.

The insider attacker had a factor of 1.5. It represented a disgruntled employee with
physical access and good knowledge of the system, but no prior attack experience, and
only limited computer science skills. In particular, the attacker was not allowed to use
tools such as nmap or ettercap, but had access to engineering tools (such as Studio
5000), and administrator accounts.

The strong attacker effectively combined both other attackers, resulting in the strongest
available attacker model, and yielded a factor of 1.

Attackers could earn points for one or more attacks. If more than one attack was
successfully performed, the highest scores from each goal was aggregated as final score.
For example, if an attack on pumps was successful both using the strong attacker
model, for a total score s of 130 points, and the cybercriminal attack model, for a to-
tal score s of 200 points, then only 200 points would be counted for that attack goal
(attack a pump).

4.5.3 Detection mechanisms

As discussed in Section4.3, as part of the design of our approach we included academic
and commercial detection mechanisms as means to incentivate the creativity of attack-
ers: the less detection mechanisms triggered the more points obtained, as discussed
in the previous subsection. Also, the experience was designed to serve as feedback to
the designers of detection mechanisms when confronted with various human attackers
and a wider range of attack possibilities. In the following we emphasise two academic
detection mechanisms implemented at SUTD.

Distributed detection system

The distributed attack detection method presented in [3] was implemented in Water
Treatment Testbed as one of the defense methods used in the S3 event. The method

Chapter 4. Gamifying ICS Security Training and Research with S3 61

is based on physical invariants derived from the CPS design. A “Process invariant,”
or simply invariant, is a mathematical relationship among “physical” and/or “chem-
ical” properties of the process controlled by the PLCs in a CPS. Together at a given
time instant, a suitable set of such properties constitute the observable state of SWaT.
For example, in a water treatment plant, such a relationship includes the correlation
between the level of water in a tank and the flow rate of incoming and outgoing water
across this tank. The properties are measured using sensors during the operation of the
CPS and captured by the PLCs at predetermined time instants. Two types of invariants
were considered: state dependent (SD) and state agnostic (SA). While both types use
states to define relationships that must hold, the SA invariants are independent of any
state based guard while SD invariants are. An SD invariant is true when the CPS is in
a given state; an SA invariant is always true.

The invariants serve as checkers of the system state. These are coded and the code
placed inside each PLC used in attack detection. Note that the checker code is added to
the control code that already exists in each PLC. The PLC executes the code in a cyclic
manner. In each cycle, data from the sensors is obtained, control actions computed
and applied when necessary, and the invariants checked against the state variables or
otherwise. Distributing the attack detection code among various controllers adds to the
scalability of the proposed method. During S3, the implementation was located inside
the Programmable Logic Controllers (PLCs).

The HAMIDS framework

The HAMIDS (HierArchical Monitoring Intrusion Detection System) framework [149]
was designed to detect network-based attacks on Industrial Control Systems. The
framework leverages a set of distributed Intrusion Detection System (IDS) nodes, lo-
cated at different layers (segments) of an ICS network. The role of those nodes is to
extract detailed information about a network segment, combine the information in a
central location, and post-process it for real-time security analysis and attack detection.
Each node uses the Bro Intrusion Detection System (IDS) [138].

Figure 4.5 shows our deployment of the HAMIDS framework instance deployed
in the SWaT. As we could see from Figure 4.5, each L0 (Layer 0) DLR segment has an
additional Bro IDS node that is collecting data flowing from a PLC to the RIO device.
An additional Bro IDS node is connected to a mirroring port of the L1 (Layer 1) indus-
trial switch, and is collecting the traffic in the L1 star topology. Every Bro IDS node is
sending data to the central HAMIDS host, by means of a secure channel (using SSH).
Elasticsearch [56], a distributed, RESTful storage and search engine, is used to provide
a scalable and reliable information recording and processing.

The HAMIDS detection mechanism is entirely isolated from the ICS network, and
thus as part of the live event, the attackers were not able to have direct access to the
detection system. So the attackers will have hard times trying to stop the detection
mechanisms of the HAMIDS framework. On the other side, there are two ways to
access data from a defender perspective: a Web interface and a SQL API.

The web interface is a user-friendly interface that can be used by less technical ICS
operators and it is capable of listing all alarms generated by the central node, and even-
tually help in detecting an ongoing attack. The expert user can directly use the SQL API
to query the central node, and obtain more detailed data about the observed packets.

Chapter 4. Gamifying ICS Security Training and Research with S3 62

HMI

Switch

...

...
SensorActuator

L0 Network

PLC 1 PLC 2

Process 1

RIO

Bro IDS

L1 Network

SensorActuator

L0 Network

PLC 1 PLC 2

Process N

RIO

Bro IDS

HMI

Bro IDS

SCADA
Historian

L2 Network

SDN Switch/Firewall

Detection
System

FIGURE 4.5: The HAMIDS framework instance: Bro IDS nodes are
placed both at L0 and L1 network segments of the SWaT.

For the event, the framework was configured to present high-level information
about the status of the detection system, suitable for non-expert defenders. Using the
web user interface, the defender could read the generated alarms related to triggered
alarms due to observed network traffic in the industrial control system. In addition,
expert defenders could read the detailed information about the ICS process by using
manual SQL queries to retrieve data for further analysis.

4.5.4 Results from the Live phase

Table 4.3 shows the final scores, the number of performed attacks and the cumulative
detection rate drate of the live phase. The cumulative detection rate was computed
as the average number of detection mechanisms triggered (considering only the two
academic detection mechanisms discussed before) in all successful attacks by a given
team.

TABLE 4.3: SWaT Security Showdown Live Results summary.

Team Score Successful Attacks drate

T1 666 4 1

T2 458 2 1

T3 642 3 1

T4 104 1 1

T5 688 5 6
5

T6 477 3 4
3

Chapter 4. Gamifying ICS Security Training and Research with S3 63

In order to show more in depth insights of the live phase, we now provide details
on several attacks that were conducted by the participants during the SWaT Security
Showdown live event (see Table 4.4). We classify those attacks in two types, the “cyber”
attacks were conducted over the network using either the cybercriminal, or the strong
attacker model, while the “physical” attacks were conducted having direct access to
the SWaT using either the insider, or the strong attacker model. We now describe each
of those attacks.

TABLE 4.4: S3 Live Attacks and Detections summary:
#= undetected, = detected.

Attack Type Score ARGUS HAMIDS

SYN flooding (DoS) PLC Cyber 396 #

DoS Layer 1 network Cyber 104 #

Tank level sensor tampering Physical 324

Chemical dosing pump manipulation Physical 360 #

DoS by SYN flooding. The first attack was a cyber-attack, and the attacker used the
insider attacker model. The attacker had access to the administrator account and as-
sociated tools. The attacker performed a SYN flooding attack on PLC1’s EtherNet/IP
server. SYN flooding is a Denial-of-Service (DoS) attack, where the attacker (the client)
continuously try to establish a TCP connection, sending a SYN request to the Ether-
Net/IP server, the EtherNet/IP server then responds with an ACK packet, however
the attacker never completes the TCP three-way-handshake and continues to send only
SYN packets. As a result of this DoS attack, the HMI’s is unable to obtain current state
values to display, and would display 0 or * characters instead. Such effects would im-
pede the supervision of ICS in real applications. However, the attack did not interrupt
or harm the physical process itself. The HAMIDS detectors was able to detect the at-
tack by observing the high number of SYN requests without follow-up. The ARGUS
detector was not able to detect the attack, as the physical process was not impacted.
DoS. The second attack was a cyber-attack, the attacker used the cybercriminal attacker
model. The attacker had access to the network and attack tools. The attacker performed
an ARP poisoning Man-in-the-Middle attack, that redirected all traffic addressed to the
HMI. The redirected traffic was then dropped and prevented from being received. The
attack drove the HMI to an unusable state, and it took a while to restore the system
state after the attack. We did not allow the attack to run long enough to affect the
physical process. HAMIDS detected the attack due to the changes in network traffic
(i.e. malicious ARP traffic, changed mapping between IP and MAC addresses in IP
traffic). In contrast, ARGUS did not detect the attack, as the physical process continued
to operate without impact.
Tank level sensor tampering. The third highlighted attack involved an on-site inter-
action with the system, the attacker used the strong attacker model. The attacker fo-
cused on one of the L0 segments, and he demonstrated control over the packets sent in
the Ethernet ring. Indeed, the attacker was able to alter the L0 traffic in real time, and

Chapter 4. Gamifying ICS Security Training and Research with S3 64

manipulate the communication between the PLC and the RIO. ARGUS was able to de-
tect the attack due to the sudden changes in reported sensor values (bad data detector).
In addition, the HAMIDS framework detect the attack by observing the change in data
reported from the PLC to the SCADA (and potentially, in L0 as well).
Chemical dosing pump manipulation. The fourth attack was a physical-attack, and
the attacker used the insider attacker model. The attacker was able to alter the chemical
dosing in the second stage (Pre-treatment) of the SWaT by interacting directly with the
HMI interface, and overriding the commands sent by the PLC (that was set in manual
mode). The attack would have resulted in an eventual degradation of the quality of the
water, however we stopped the attack before that case occurred. ARGUS was able to
detect the attack because the updated setpoints diverged from their hard-coded coun-
terpart in the detection mechanism. The HAMIDS detection was unable to detect this
scenario as the network traffic did not show unusual patterns or changes (as typical for
attacks using the insider model).

4.6 Related work

In [121] Mink presents an empirical study that evaluates how exercises based on gam-
ification and offensive security increase the motivation and the final knowledge of the
participants. Our work tries to extend this message to ICS security, while Mink’s paper
focuses on traditional Information security.

DEFCON [42] is an annual hacking conference organized by information security
enthusiasts. The DEFCON CTF is part of the main event, and it is one of the most
well known, and competitive CTF contest worldwide. Like S3, it has a Jeopardy-style
qualification phase, and an attack-defense final phase. However ICS security is not
the main focus of DEFCON’s CTF. Several other similar CTF competitions are listed
in [45]. In [180] Vigna proposes to use gamified live exercises to teach network security.
The motivations and philosophy of this work are similar to ours. However the focus
of the paper is on IT network security (e. g. gain root privileges on a webserver or
steal data from a SQL database) and not on OT network security (industrial network
devices and protocols). Inspired by [180], in [38] authors of the iCTF event presented
two novel, live, and large-scale security competitions. The first is called “treasure hunt”
and it exercises network mapping and multi-step network attacks. The second is a
“Botnet-inspired” competition and it involves client-side web security tasks such as
Web browsers exploitation. Unlike the presented chapter, both competitions focus on
traditional client-server IT network architectures and attack-only scenario.

The MIT/LL CTF [185] was an attack-defense CTF with a focus on web application
security. The main goal of the event was to attract more people towards practical com-
puter security exercises. The CTF takes inspiration from Webseclab [28], a web security
teaching Virtual Machine that is packed with an interactive teaching web application,
a sandboxed student development environment, and a set of useful programs. Both
are interesting projects but they are not covering the ICS security domain, even though
they share some of the presented goals. BIBIFI [154] is a cyber-security competition
held mainly in academic environments that combines in the same contest: secure de-
velopment (Build-it), attacks development (Break-it) and patch development (Fix-it).

Chapter 4. Gamifying ICS Security Training and Research with S3 65

This effort was targeted at improving secure software construction education, and thus
the exercises proposed in this competition do not cover the ICS security domain.

4.7 Conclusions

In this work we discussed problems faced by security experts and ICS engineers in the
context of ICS security education and research. In particular, security experts require
access to real ICS infrastructures to learn about ICS (security) and practise applied at-
tacks and defenses. In addition, ICS engineers require additional training focused on
basic cyber-security concepts and offensive and defensive security techniques. We pro-
pose to use gamified security competitions such as online and live Capture-The-Flag
to address and mitigate those problems. To demonstrate the feasibility of such events,
we designed and implemented the SWaT Security Showdown (S3), leveraging the Secure
Water Treatment (SWaT) water treatment testbed.

To the best of our knowledge, the S3 event was the first security competition in-
volving access to live and virtual ICS infrastructures (e. g. MiniCPS). The online phase
consisted of a Jeopardy-style CTF that included novel challenges specifically designed
for ICS security. For example, we gave to the attacker remote access to a real PLC pro-
gramming environment (e. g. Studio 5000) and we asked them to understand a ladder
logic program. Overall, six participating attacker teams submitted 77 correct flags in
the online phase of the S3 event.

In the live phase (an attack-defense CTF), the participating teams performed 18 suc-
cessful attacks in SWaT within a limited time frame. The timing was an important factor
because it increased the level of realism of the competition. During the S3 live phase
the teams demonstrated a wide range of different attack approaches, and adapted their
attacks to challenges posed by the complexity of the real testbed. In addition we also
evaluated several (novel) detection mechanisms including two internally-developed
ones (e. g. ARGUS and HAMIDS). Most of the attacks were detected by at least one of
our detection mechanisms.

In summary, S3 was an enriching experience for everybody, including us (the orga-
nizers). We hope that such event provides a foundation to enable others to run similar
ICS security educational experiments in the near future.

66

Chapter 5

Conclusion about Cyber-Physical
Systems Security

Cyber-Physical Systems (CPS) are systems managing physical processes using sensors,
actuators, and interconnected controllers. Examples of CPS include water treatment
and distribution plants. In the first part of this thesis we focused on securing these sys-
tems. We started by defining three intertwined problems: technologies and processes,
multi-disciplinary communities, threat models and incentives. Technologies related to
CPS require an understanding of a broad and complex set of topics such as control the-
ory, network engineering, process engineering and information security. Different CPS
professionals work in isolated communities with separate (and sometimes conflicting)
regulations. CPS were not designed with security in mind but for safety.

We believe that to tackle these problems we need a free, modern, accessible and
extendible toolkit to experiment with CPS. MiniCPS [10] 1 is the main result of our
vision. MiniCPS is a free and open source toolkit to build lightweight and real-time
simulations of CPS built on top of mininet. It is the first product that allows to em-
ulate an CPS network in real-time while providing a simulated physical process and
simulated or emulated control devices. Currently. MiniCPS supports EtherNet/IP and
Modbus/TCP two popular industrial protocol.

We used MiniCPS to prototype the first virtual high-interaction honeypot for in-
dustrial control systems [7]. Honeypots are defense mechanism widely used in the IT
domain to lure attackers into attacking fake systems. In our implementation we mimic
a water distribution system. MiniCPS was used as an educational tool to implement
novel CTF challenges for a cybersecurity competition targeted at CPS security profes-
sionals. We used real-time simulation to let the participant access and attack a virtual-
ized water treatment testbed [13]. MiniCPS was used as an attack tools as the basis of
CPSBot a framework to build botnets for CPS [8]. The real-time simulation capabilities
can be used by an attacker to predict dynamically predict the best attack decisions.

MiniCPS was used by and/or exposed to the following institutions: University of
Oxford, Georgia Tech, UT Dallas, University of Luxembourg, Rutgers University, Uni-
versity of Padua, Roma Tre University and the following industries: Pacific Northwest
National Laboratory, ST Engineering2.

1https://francozappa.github.io/project/minicps/
2See Chapter 10 for our conclusion about wireless systems security.

https://francozappa.github.io/project/minicps/

Chapter 5. Conclusion about Cyber-Physical Systems Security 67

5.1 Lessons Learnt

During this PhD I’ve learnt many valuable lessons. Here I’m sharing some of them
regarding cyber-physical system security:

• Security through obscurity is still a problem for CPS, especially in the case of ICS.

• Mathematical modeling of a physical process is not directly portable across dif-
ferent CPS (even of the same type).

• IT and OT security communities are diverse and it is hard to connect them.

5.2 Future Work

These are the main research directions that we would like to see in the future:

• Experimentation with real-time simulation of complex physical processes.

• Emulation of less popular CPU architectures, operating systems and firmwares.

• Dissemination of data sets collected from CPS testbeds and/or actual plants.

• Development and Sharing of physical and cyber models of CPS.

68

Part II

Wireless systems security

69

Chapter 6

Introduction to Wireless Systems
Security

6.1 Problem Statement

Wireless communication technologies are providing key services to our society and
they are evolving at unprecedented scale and speed. Nowadays, even a low-cost smart-
phone is equipped with multiple baseband technologies, e.g. cellular, Wi-Fi, Bluetooth,
Global Positioning System (GPS), and Near-field communication (NFC) to provide a
variety of wireless services. Novel wireless technologies are also developed for emerg-
ing applications such as (industrial) internet of things and unmanned aerial vehicle.
Common wireless technologies are developed to have adequate throughput, range,
and reliability. Specialized ones look at other factors such as real-time constraints and
low power consumption. Despite the variety of requirements and use cases, wireless
communications involving sensitive data must also provide security guarantees, such
as confidentiality, integrity, and authentication.

There are two main research branches aiming to secure wireless communications:
cryptography and physical layer security. Cryptography develops security mechanisms
from the OSI link layer upwards by securing bits using cryptographic schemes, e.g.,
RSA and ECDH. Cryptographic solutions are widely adopted by wireless technology
standards such as 802.11X for Wi-Fi, and Secure Simple Pairing and Secure Connections
for Bluetooth. Physical layer security mechanisms are complementary to cryptography
and they are based on the characteristics of the wireless channel and the physical layer
parameters of the transceivers. For example, to combat eavesdropping, the defender
might introduce artificial noise (i. e. friendly jamming) [181] or he might use spatial
diversity techniques (i. e. beamforming) [4]. At the time of writing, physical layer solu-
tions are not adopted by any commercial wireless standards (e. g. Bluetooth and Wi-Fi).

In this dissertation we deal with the following problems of wireless communication
systems security:

1. Effectiveness of physical layer features as defense mechanisms

2. Complexity and accessibility of wireless technologies

3. Security evaluations and hardening of wireless technologies

Chapter 6. Introduction to Wireless Systems Security 70

6.1.1 Effectiveness of physical layer features as defense mechanisms

In the last decade, wireless network communication has grown tremendously, mainly
due to the evolution of wireless standards such as 3G, 4G and 5G. These standards
introduced several physical layer features to increase the throughput and reliably of
the link. For example, recent amendments of the 802.11 Wireless local area network
(WLAN) standard introduced Multiple-Input-Multiple-Output (MIMO), spatial diver-
sity (CSD, TxBF, STBC), and spatial multiplexing (MU-TxBF) techniques [87]. MIMO
allows a node to use multiple antennas to transmit or receive multiple wireless signals.
Spatial diversity increases the reliably of a point-to-point link by taking advantage of
multiple antennas to send or receive a single wireless signal. Spatial multiplexing can
be used by a transmitter to reach multiple users at the same time taking advantage of
multiple antennas.

It was theoretically demonstrated that some physical layer features might also be
used to degrade the performance of different types of attackers [198]. For example, spa-
tial diversity (beamforming) might degrade the signal to noise ratio (SNR) of a passive
eavesdropper that is far from the main transmission lobe [4]. However, no prior work
has been done to quantify the disadvantage in a practical scenario (e. g. an access point
that is connecting multiple laptop to the Internet). Such an analysis would be useful
because if some physical layer features that are already deployed can effectively be
used to mitigate some attacks, then new defense mechanisms, complementary to cryp-
tographic ones, can be integrated almost for free on commercial off the shelf (COTS)
devices.

6.1.2 Complexity and accessibility of wireless technologies

Wireless technologies are based on complex specification and implemented using com-
plex technologies that might be difficult to access. The protocol specification might be
freely available, (e. g. Bluetooth), available upon subscription fees (e. g. 802.11 amend-
ments), partially available or not available at all. The implementation of the protocol
suffers the same issues of the specifications. Typically, a modern protocol is divided
into components and these components are implemented on different devices (with
different requirements). It might be doable to get access to the source code of OS drivers
and kernels, e. g. Linux and bluez. Unfortunately, the source code for radio firmwares
is not available and it has to be reversed engineered [158, 114].

As a result of these issues security through obscurity is still a problem for wireless com-
munication technologies. It is indeed important to develop effective and low-cost tech-
niques to analyze (proprietary) wireless protocols and to build low-cost platform to ex-
periments with radio signals. Projects such as scapy [25], Frida [148], Ubertooth [135]
and HackRF [134] are excellent examples going in that direction.

6.1.3 Security evaluations and hardening of wireless technologies

Wireless technologies, despite their underlying complexity and poor accessibility, are
a very attractive target for attackers. A single vulnerability in the specification of a
wireless protocol automatically affects all standard-compliant devices, regardless their
implementation details such as underlying CPU architecture, operating system, and

Chapter 6. Introduction to Wireless Systems Security 71

firmware. It is important to perform security analysis and evaluations of standard
wireless technologies such as Wi-Fi and Bluetooth. Proprietary wireless technologies
from big companies such as Apple and Google are also an interesting target for at-
tackers because they are shipped with all their devices such as smartphones, tablets,
laptops and IoT gadgets.

Even tough a security evaluation might have an significant initial cost (reverse en-
gineering code, protocols and crypto) the evaluation will provide huge benefits in the
long term that can (and should) be reused across different analyses. The biggest return
of a security evaluation is finding, exploding and fixing high-impact security vulner-
abilities and this will be one of the focus on this part of the dissertation. We took
inspiration from several pivotal papers in the domain of Bluetooth attacks [164], 802.11
attacks [27] and applied crypto attacks [93].

6.2 Our Vision, Research Directions and Questions

We believe that physical layer features can and should be used as a complementary
defense mechanisms to cryptography. We would have to find the best solution that
is capable of adding security guarantees without adding too much performance over-
head. The best way to start this transition is by looking at already deployed physical
layer features, such as MIMO and beamforming, and see whether or not they can help
us in practice. The usage of such features is expected to grow with the advent of 5G
technologies that will employ a massive number of directional antennas. In the case of
802.11 a comparison between its recent amendments would be useful to understand if
some already implemented physical layer features can be effectively used as defense
mechanisms to protect against some kind of attacks. Additionally, if this analysis is
successful for 802.11 then It might be reused for other deployed technologies such as
Bluetooth and ultra wideband schemes.

We believe that wireless communications technologies should be more open to
security researcher. Security through obscurity has been proven ineffective multiple
times already and it is a risky business especially when dealing with complex software
and hardware systems. We would like to find and share effective techniques to ana-
lyze wireless systems including proprietary ones. In the case of proprietary wireless
technologies such as Google Nearby Connections, a reverse-engineering phase and the
reimplementation of the protocol would be useful to understand the internal details of
the protocol, to provide guidelines to other researchers interested into analyzing other
proprietary protocol and to help the protocol developers to find and fix security vul-
nerabilities.

Even if a wireless technology has a standard body behind with available specifica-
tion it does not mean that it is secure. We would like to test the security posture of
the most popular standard wireless technologies such as Bluetooth. We would have a
look at the security architecture of the protocol and the provided security guarantees.
Given the lack of a reference implementation for Bluetooth some extra effort might be
necessary to test specific sub-systems of the protocol such as handshakes, key genera-
tion and distribution. The result of this analysis will be beneficial in any case, if we find
some vulnerabilities we can fix them and if we don’t find any of them we can confirm
that the protocol is providing what it claims to offer.

Chapter 6. Introduction to Wireless Systems Security 72

Here is a list of research questions that we want to tackle:
• Are there deployed physical layer features that can be (re)used to provide security

guarantees against different attacker models?
– What about MIMO and spatial diversity?
– Are these features implemented and used by 802.11 (WLAN) devices?

• How can we effectively analyze and evaluate wireless communication system?
– What about proprietary technologies (from big corporations)?
– Shall we use static or dynamic analysis techniques?

• What is the security posture of standard wireless technologies such as Bluetooth?
– Are the specifications secure from a cryptographic point of view?
– Are the products keeping up with the specification evolution?

6.3 Wireless Systems Security Contributions

The second part of the thesis makes contributions in the area of wireless systems secu-
rity, with results published in refereed venues. The contributions about cyber-physical
systems security are presented in Section 1.3.

• Chapter 7 discusses the impact of recent 802.11 features, such as Multiple-Input-
Multiple-Output (MIMO) and beamforming, on the physical layer security of
802.11n and ac networks, using 802.11b (no MIMO) as a baseline for compar-
isons. We are interested in passive eavesdropping attacks where both the in-
tended receiver and the attacker are using COTS devices. The fact that MIMO
and beamforming are introducing a disadvantage for the passive eavesdropper is
a well know theoretical result, and it is related to the concepts of spatial diversity
and multiplexing. However, the impact of MIMO and beamforming on 802.11n
and ac networks has not yet been discussed and experimentally evaluated. We
present a theoretical discussion and a statistical analysis to predict the effect on
the eavesdropper’s Signal-to-Noise-Ratio (SNR) and Packet-Error-Rate (PER). We
show that the PER in 802.11n increases up to 98% (compared to 802.11b) at a dis-
tance of 20 meters between the sender and the eavesdropper. To obtain a PER of
0.5 in 802.11n, the attacker’s maximal distance is reduced by up to 129.5 m com-
pared to 802.11b. In our experiments, we used the simplest MIMO beamforming
setup leveraging COTS devices to reduce the variability of the results. The results
validated the predicted feedings. We conclude that the MIMO and beamform-
ing capabilities of modern 802.11 networks provide some soft countermeasure
against passive eavesdropping using COTS devices. Chapter 7 appeared in Pro-
ceedings of the Cryptology and Network Security Conference (CANS) 2017 [9]

• Chapter 8 presents the first security analysis of the Google’s Nearby Connections
API, based on reverse-engineering of its Android implementation. The Nearby
Connections API enables any Android (and Android Things) application to pro-
vide proximity- based services to its users, regardless of their network connectiv-
ity. We demonstrate several attacks grouped into two families: connection ma-
nipulation (CMA) and range extension attacks (REA). CMA-attacks allow an at-
tacker to insert himself as a man-in-the-middle and manipulate connections (even

Chapter 6. Introduction to Wireless Systems Security 73

unrelated to the API), and to tamper with the victim’s network interface and con-
figuration. REA-attacks allow an attacker to tunnel any nearby connection to re-
mote (non- nearby) locations, even between two honest devices. Our attacks are
enabled by REarby, a toolkit we developed while reversing the implementation
of the API. REarby includes a dynamic binary instrumenter, a packet dissector,
and the implementations of custom Nearby Connections client and server. Chap-
ter 8 appeared in Proceedings of the Network and Distributed System Security
Symposium (NDSS) 2019 [11]

• Chapter 9 presents an attack on the encryption key negotiation protocol of Blue-
tooth BR/EDR (Bluetooth Classic). The attack allows a third party, without knowl-
edge of any secret material (such as link and encryption keys), to make two (or
more) victims agree on an encryption key with only 1 byte (8 bits) of entropy.
Such low entropy enables the attacker to easily brute force the negotiated encryp-
tion keys, decrypt the eavesdropped ciphertext, and inject valid encrypted mes-
sages (in real-time). The attack is stealthy because the encryption key negotiation
is transparent to the Bluetooth users. The attack is standard-compliant because
all Bluetooth BR/EDR versions require to support encryption keys with entropy
between 1 and 16 bytes and do not secure the key negotiation protocol. As a
result, the attacker completely breaks Bluetooth BR/EDR security without being
detected. We call our attack Key Negotiation Of Bluetooth (KNOB) attack. We de-
scribe how to perform the KNOB attack, and we implement it. We evaluate our
implementation on more than 14 Bluetooth chips from popular manufacturers
such as Intel, Broadcom, Apple, and Qualcomm. Our results demonstrate that all
tested devices are vulnerable to the KNOB attack. We discuss countermeasures
to fix the Bluetooth specification and its implementation. Chapter 9 appeared in
Proceedings of the USENIX Security Symposium 2019 [12]

• Chapter 10 concludes the second part of this dissertation, summarizing our con-
tributions, lessons learnt, and future works.

74

Chapter 7

Practical Evaluation of Passive
COTS Eavesdropping in
802.11b/n/ac WLAN

Keywords: WLAN, 802.11, Eavesdropping, MIMO, Beamforming.

7.1 Introduction

In the last decade, wireless network communication has grown tremendously mainly
due to standards such as UMTS (3G) and LTE (4G) for cellular networks and IEEE
802.11 (WLAN) for wireless networks. Cisco estimated that in 2017, 68% of all Internet
traffic will be generated by wireless devices [39]. As a result, it can be expected that a
majority of sensitive communication services, such as mobile banking and online pay-
ments will involve wireless networks. Indeed, it is paramount to secure the broadcast
wireless channel against eavesdroppers to protect the confidentiality and integrity of
the information.

In this work, we present a theoretical discussion, a numerical analysis (using path
loss models), and a practical evaluation of passive eavesdropping attacks targeting sev-
eral 802.11 (WLAN) networks. Recent 802.11n/ac amendments introduced interesting
physical layer and link layer features such as Multiple-Input-Multiple-Output (MIMO),
spatial diversity (e. g. CSD, TxBF, STBC) , spatial multiplexing (e. g. MU-TxBF), dual-
band antennas1 and frame aggregation [87]. It is believed that some of those features,
that were developed mainly to increase the robustness and throughput of the channel
might also degrade the performance of a passive eavesdropper. We would like to inves-
tigate this claim and experimentally measure whether this degradation happens or not
in practice in a simple but yet realistic scenario (e. g. eavesdropping WLAN networks
with COTS devices).

Several theoretical discussions have already been presented about passive and ac-
tive eavesdropping in the wireless channel. The seminal work by Wyner [191] started
the wiretap channel research track that has been extended to Gaussian [106], fading [76],
and MIMO [130] channels. This set of papers studies asymptotic conditions that very
rarely happen in practice. Recently, special attention was given to MIMO and beam-
forming as a defense mechanism against passive eavesdropping [145, 192, 139]. How-
ever, those works do not focus on 802.11 and they consider only a subset of the 802.11

1In this work we always use the word antennas rather than antennae.

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 75

features. There are also some alternative techniques already proposed against pas-
sive eavesdropping including multi-user cooperative diversity and the use of artificial
noise [51, 198, 125]. However, those techniques are neither listed in any 802.11 stan-
dards nor implemented in any COTS device.

In this chapter, we investigate the disadvantages that a passive eavesdropper has
to face when attacking the downlink of an 802.11n/ac (MIMO) network versus an
802.11b (SISO) network. We focus on 802.11 networks in infrastructure mode (e. g.
an access point connecting several laptops to the Internet) that use Commercial-Of-
The-Shelf (COTS) devices. In particular, we compare three of the most widely used
802.11 amendments: b, n, and ac. We look at the downlink (e. g. traffic from the access
point to the terminals) because it is the link that supports most of the advanced fea-
tures of 802.11n/ac (e. g. spatial diversity and spatial multiplexing). We use 802.11b as
a baseline. Our attacker model choice is explained in detail in Section 7.3.1, and a brief
discussion about a stronger attacker model is presented in Section 7.4.5.

In our theoretical discussion, we estimate lower and upper bounds for the expected
Signal-to-Noise-Ratio (SNR) disadvantage of an eavesdropper in 802.11n and ac com-
pared to 802.11b. We numerically derive the expected Packet-Error-Rate (PER) of the
intended receiver and the eavesdropper with respect to their distances to the sender.
Finally, we present an 802.11b/n/ac downlink empirical evaluation using COTS de-
vices. After the experiments, we are able to confirm that in 802.11n/ac networks, the
PER of the eavesdropper increases with respect to her distance to the sender, given a
minimum distance between the attacker and the intended receiver.

We summarize our contributions as follows:
• We derive the theoretically expected eavesdropper’s SNR disadvantage (in dB),

for attacks using COTS radios, in 802.11b/n/ac downlinks.
• We discuss how the theoretical SNR disadvantage translates to practical con-

straints (e. g. reduced range, higher PER) for the attacker.
• We perform a series of experiments to validate that the expected disadvantage is

experienced in practice and that its effects were correctly predicted.

The structure of this work is as follows: in Section 7.2 we provide the required wire-
less communications background. In Section 7.3, we present the system and attacker
models, we compare passive eavesdropping 802.11b and 802.11n/ac downlinks, and
we estimate the SNR and PER disadvantages for a passive eavesdropper in 802.11n/ac.
In Section 7.4, we present our results from a series of eavesdropping experiments that
validate our predicted impediments. We summarize related work in Section 7.5, and
conclude the chapter in Section 7.6.

7.2 Background

We now provide a summary of the important concepts used in this work: the fading
wireless channel, the 802.11b/n/ac amendments, and three wireless communication
metrics (SNR, BER, and PER). For additional details, we refer to influential books such
as [140, 65].

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 76

7.2.1 The Fading Wireless Channel

The progression of wireless communication systems evolved around two main metrics:
robustness and throughput. Those metrics are severely influenced by channel fading.
Fading can be described as a random process affecting the quality of the transmitted
wireless signal, by means of attenuation and distortion over time and frequency. There
are three additive phenomena contributing to fading: path loss, shadowing, and mul-
tipath.

Path loss is a large-scale fading event due to the propagation nature of the electro-
magnetic waves (that are carrying the useful signal). There are different path loss mod-
els according to the system parameters and the channel environment. For example,
in the Free Space Path Loss (FSPL) model the transmitted power decays quadratically
with the distance from the transmitter to the receiver. Shadowing is another large-scale
fading event due to the presence of obstacles between the transmitter and the receiver.
There are different ways to model shadowing such as using a log-normal random vari-
able. Multipath is a small-scale fading phenomenon that takes into account constrictive
and/or destructive interference at the receiver between direct, reflected and scattered
electromagnetic waves.

There are two well-known fading models that take into account all three fading as-
pects: Rayleigh fading for non-line-of-sight (NLOS) environments, and Rician fading for
line-of-sight (LOS) environments. In both cases, each channel coefficient h is modeled
with a complex random number. Each channel coefficient is providing random atten-
uation (change in amplitude) and distortion (change in phase). In the Rayleigh fading
model, the real and imaginary parts of h are modeled with independent identically-
distributed (IID) Gaussian random variables with 0 mean and equal variances and the
amplitude of h is Rayleigh distributed. In the (more generic) Rician fading model, the
amplitude of h is Rice distributed.

7.2.2 IEEE 802.11 Standard (WLAN)

802.11 is a family of IEEE standards that regulates wireless local area networks [44].
The standards define the physical layer (PHY), and the link layer specifications. An ex-
ample of physical layer specification is the modulation and coding scheme (MCS) table
that lists the supported modulation types, spatial streams, coding rates, bandwidths
and data rates of a given PHY. An example of link layer specification is the medium
access control (MAC) protocol that governs how the nodes share the wireless medium.

Table 7.1 lists some relevant physical layer specifications for 802.11b, n, and ac [87].
802.11b uses Single-Input-Single-Output (SISO) scheme with direct-sequence spread
spectrum (DSSS) modulation techniques. In contrast, 802.11n and 802.11ac are Multiple-
Input-Multiple-Output (MIMO) schemes, based on orthogonal frequency division mul-
tiplexing (OFDM) modulation techniques. Single user MIMO is supported by 802.11n,
while 802.11ac supports multi-user MIMO. The major advantage in terms of through-
put and robustness of the channel from b to n/ac is given by the usage of multiple ra-
dios and antennas that allows transmitting different independent symbol at the same
time (spatial multiplexing) or the same symbol on multiple antennas at the same time
(spatial diversity). In particular, 802.11n/ac support transmit-beamforming (TxBF) at
the downlink for single user (n) and multiple users (ac). By using TxBF, an access point

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 77

TABLE 7.1: Relevant 802.11b/n/ac physical layer specifications. fc is the
carrier frequency, λ is the wavelength, sdr is the theoretical maximum
throughput of the channel, nS is the number of maximum independent
data streams, TxBF indicates support for single-user (SU) or multi-user
(MU) transmit-beamforming, di and do are the expected ranges for in-

door and outdoor communications.

Technology Mod fc λ sdr nS TxBF di do

b SISO DSSS 2.4 12.5 11 N/A N/A 35 140

n SU-MIMO OFDM 2.4, 5 12.5, 6 135 4 SU 70 250

ac MU-MIMO OFDM 5 6 780 8 MU 35 N/A

can optimize the transmission of the symbols to a device located in a particular region
of space, given an estimate of the condition of the downlink channel. For a more de-
tailed comparison among the three 802.11 amendments please refer to [84, 132].

7.2.3 Wireless Communications Metrics

Here we present the three wireless communication metrics used in our work:
• The Signal-to-Noise-Ratio (SNR) is the ratio between the power of the useful signal

denoted with P , and the noise power σ2. It is typically expressed in decibel dB,
and it convertible from logarithmic to linear scale using: 10 log10 SNR = SNRdB.

• The Bit-Error-Rate (BER) is the expected probability of error while decoding 1-bit
at the receiver. The BER is not an exact quantity. It can be modeled and estimated
according to different factors such as the modulation/coding schemes, the fading
model and the number of antennas. Typically, 10−6 is considered a reasonable
BER value, i. e. 1-bit error per Mbit.

• The Packet-Error-Rate (PER) is directly proportional to the BER, and it is computed
as: PER = 1 − (1− BER)N , where N is the average packet size in bits. In this
work, we assume that one or more bit errors in a packet will lead to an incorrect
link layer checksum. Packets with an incorrect checksum are not acknowledged
by the (legitimate) receiver, and retransmitted by the sender.

7.3 Passive 802.11 Downlink Eavesdropping

We start this section introducing the system and attacker models. Then we present a
theoretical discussion and a numerical analysis (based on 802.11 path loss models) to
estimate the SNR and PER disadvantages of a passive eavesdropper in an 802.11n/ac
(MISO) downlink, compared to an 802.11b (SISO) downlink.

7.3.1 System and Attacker Model

Our system model focuses on the downlink of indoor 802.11b/n/ac networks in infras-
tructure mode (e. g. access point that communicates with several wireless terminals),
using Commercial-Of-The-Shelf (COTS) devices. The access point is equipped with

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 78

multiple antennas. The intended receiver and the attacker are equipped either with
a single or multiple antennas according to the scenario. We are looking at the ratio
of packets that the attacker successfully eavesdrop on the physical layer and we are
agnostic to any encryption scheme used at the link layer or above. Attacks on those
schemes are possible, but out of the scope of this work [27, 151].

The attacker is assumed to be equipotent to the intended receiver in terms of hard-
ware and software capabilities. In particular, both use COTS devices, with a similar
chipset, driver, feature set, and maximum throughput. With COTS devices we refer
to wireless radios either built into laptops, smartphones, access point or USB dongles.
We do not consider an attacker equipped with a software-defined-radio (SDR) or sim-
ilar devices. We focus on a passive eavesdropper who wants to capture the downlink
packets in real-time using her wireless card in monitor mode. We are not consider-
ing an attacker who is recording and post-processing the traffic offline. We assume an
attacker that is static and we evaluate her eavesdropping performance at different dis-
tances from the sender. If the sender is using beamforming, we assume that the attacker
is outside the beamforming region.

The effectiveness of the attacker is assessed from the Signal-to-Noise-Ratio (SNR)
and the Packet-Error-Rate (PER) at her receiver. We chose PER as metric because
we are mainly interested in the relative performance of eavesdropping on 802.11b vs.
802.11n/ac. As our passive attacker is unable to request retransmissions, the only
chance to recover from bit errors would be to find the offending bit(s) and correct it
using a checksum (possibly by brute force). We note that such corrections are expected
to have significant cost for increasing number of flipped bits, and that the number of
flipped bits is expected to quickly increase with distance. We plan to further investigate
this in future work.

Without loss of generality and to simplify our discussion, we are considering an
attacker focused on eavesdropping the downlink channel of one pair of transmitter
and intended receiver. We understand that our attacker model is relatively weak (e. g.
a single attacker, no SDR), however, given the lack of related experimental work and
the number of involved moving parts, we decided to start with a simple scenario that
is easy to evaluate (e. g. worst-case scenario for the passive eavesdropper). We look
forward to investigate more complex attacker models in future work.

Finally, we present the notation used in this chapter. The access point is referred as
Alice (the transmitter), the victim as Bob (the intended receiver), and the attacker as Eve
(passive eavesdropper). We will use A, B, and E subscripts to identify quantities related
to Alice, Bob, and Eve respectively. We use x to denote Alice’s transmitted symbol, h
for complex channel coefficients, and n for the noise at a specific receiver. The relative
distances between Alice, Bob, and Eve are written as: dAB , dBE , dAE . Alice is equipped
with L antennas and L radios.

7.3.2 SISO and MISO Channels Eavesdropping

In this section, we analyze and compare two different eavesdropping scenario: 802.11b
SISO downlink and 802.11n/ac MISO downlink. Then we derive two essential conclu-
sions about passive eavesdropping in SISO vs. MIMO 802.11 downlinks.

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 79

(A) Omnidirectional radiation (L = 1). Eve’s suc-
cess depends on dAE .

(B) Transmit-beamforming (L > 1). Eve’s success
depends also on dBE and L.

FIGURE 7.1: 802.11b SISO (left) vs. 802.11 n/ac MISO (right) passive
eavesdropping. Bob and Eve have one antenna. Dashed lines represent
distances. Black circles and lobes represent omnidirectional and direc-
tional transmission ranges. Circles and lobes decreasing thickness rep-
resent the transmission power decay with respect to distance from the

transmitter. Both channels are affected by random noise and fading.

802.11b SISO downlink. Figure 7.1a shows Eve trying to intercept the communication
from Alice to Bob in an 802.11b SISO network. We can represent the signals received
by Eve and Bob as:

yE = x · hE + nE (7.1)
yB = x · hB + nB (7.2)

Intuitively, it is possible to represent Alice’s two-dimensional transmission cover-
age with concentric circles. In free space, the greater is the distance from the trans-
mitter the higher is the transmitted power decay. While one might assume that every
receiver inside these circles will be “in range” and receive all transmissions by Alice,
this is not the case in practice. If circles are shown around transmitters, their radius
commonly refers to a distance in which the average received signal strength is above
a certain threshold. However, due to random deep fading (mostly due to multipath),
the instantaneous received power will constantly vary. In other words, it is possible to
“miss transmissions” while being in the outer circle, or even receive transmissions just
outside the outer circle. In this case, Eve’s success rate depends on her distance to Al-
ice (dAE) regardless of her distance to Bob (dBE), and random channel characteristics.
The SISO wireless channel is providing some sort of resiliency against eavesdropping
that an attacker can compensate with other means (eg: increase receiver sensitivity, use
directional antenna).
802.11n/ac MISO downlink. Figure 7.1b shows Eve attempting to intercept the com-
munication from Alice to Bob in an 802.11n/ac MISO network. Alice is equipped with
L antennas and uses transmit-beamforming. In this scenario, beamforming has been
theoretically proven to provide resiliency against passive eavesdropping [83]. The re-
ceived signals by Eve and Bob are as follows:

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 80

yE = x · gE + nE (7.3)
yB = x · gB + nB (7.4)

We can derive two benefits in terms of eavesdropping resiliency, one from gB , and
one from gE . ‖gB‖2 is defined as the beamforming gain and it is modeled by a Chi-
squared random variable, with parameter 2L (being the sum of squared IID standard
Gaussian random variables). Indeed, if L = 2 (Alice is using two antennas), then Bob’s
received signal will be the sum of two signals with independent fading paths. The
correspondent beamforming gain is computed as:

‖gB‖2 =‖hB1‖2 +‖hB2‖2 (7.5)

and this quantity is certainly greater (or equal) to‖hB1‖2 and‖hB2‖2. The net result
is a better SNR at Bob’s receiver with respect to the SISO case.

The second benefit arising from transmit-beamforming is encapsulated by gE . Eve’s
ability to eavesdrop depends on two more factors with respect to the SISO case. Firstly,
her distance from Bob (dBE), and secondly the number of antennas used by Alice (L).
This is a consequence of transmit-beamforming employed by Alice (the beamformer)
towards Bob (the beamformee). Figure 7.1b shows Alice beamforming in the direction
of Bob (e. g. inside the main lobe) while Eve is outside the main and the side lobes. This
results in a smaller SNR at her receiver compared to the one of Figure 7.1a (given the
same relative distances). Even if we decrease the distance between Eve and Alice, the
disadvantage will still hold until Eve is outside the beamforming region. Furthermore,
Eve’s SNR will be inversely proportional to L because the more antennas are used by
Alice to beamform, the more Alice can focus the beam towards a narrower but longer
region in space [177].

7.3.3 Eavesdropper’s Theoretical SNR Disadvantage in 802.11n/ac

In the previous section we argued that MISO beamforming from Alice to Bob will de-
grade Eve’s eavesdropping performance according to dAE , dBE , and L. In this section,
we will quantify the expected disadvantage of Eve in an 802.11n/ac network compared
to an 802.11b network. We will estimate upper and lower bounds for the SNR at Eve’s
receiver with respect to L. We will provide numerical results for L = 4 to match the
experimental setup of Section 7.4.1. We note that the bounds we are providing are not
supposed to be strict—the actual SNR disadvantage will depend on many factors. Nev-
ertheless, we compute the bounds based on the modeling assumptions to provide an
intuition about the theoretically expected disadvantage.
Upper Bound. We start comparing high-level wireless channel characteristics of SISO
and MISO channels. Table 7.2 lists the closed-form expressions for the SNR and the
BER of SISO and MISO networks using BPSK modulation scheme. In general, we note
that the number of antennas deployed by Alice (L) is playing a central role. If we fix
the expected BER to 10−6, then we can compute the minimum SNR for the SISO (57 dB)
and the MISO case with L = 4 (16 dB). There is a notable difference in SNR of 41 dB

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 81

TABLE 7.2: SNR and BER of 802.11b (SISO) and 802.11n/ac (MISO
transmit-beamforming withL antenna) using BPSK modulation scheme.

Metric SISO MISO Beamforming

SNR ‖h‖2 P
σ2 ‖g‖2 P

σ2

BER 1
2 (1− λ)

(
1−λ
2

)L∑L−1
i=0

(
L+i−1

i

) (
1+λ
2

)i
λ =

√
SNR

2+SNR

DO 1 L

between the SISO and the MISO cases. We use 41 dB as an upper bound for the SNR
disadvantage of Eve with respect to Bob.
Lower Bound. For the lower bound of Eve’s SNR disadvantage, we use a standard
formula to compute the beamforming gain in a MISO channel where Alice is using
Cyclic Delay Diversity (CDD) with L antennas [116]. In this case, the beamforming
gain in dB can be computed as follows:

‖g‖2 = 10 log10(L) dB (7.6)

Assuming a COTS access point with 4 antennas and a single receiving antenna,
Bob’s beamforming gain is 6 dB. As Eve’s COTS radio will not benefit from the beam-
forming gain (being outside the main lobe) Eve’s SNR disadvantage lower bound is
thus 6 dB with respect to Bob.
Summary. We estimate that an 802.11n/ac downlink that is using transmit-beamforming
with four antennas provides an reduction in the SNR of a passive eavesdropper (out-
side the main lobe, using a COTS receiver) that is bounded between 6 dB and 41 dB. The
reduction in SNR at Eve’s receiver depends on a deterministic and measurable factors:
dAE (distance between Alice and Eve) and L (number of antennas used by the Alice).
We note that Eve’s SNR variation depends also on channel (Rayleigh) fading, however
this factor is not considered in our discussion because it randomly affects both Bob and
Eve, providing no deterministic disadvantage to Eve. Given this theoretically expected
disadvantage, the question now is: “How does the eavesdropper SNR disadvantage translate
to practical constraints on 802.11 passive eavesdroppers?”

7.3.4 Numerical Path Loss Analysis

In this section, we present a numerical analysis using three indoor path loss models for
802.11 networks. The models includes both the 2.4 and 5 GHz bands and they are taken
from [140]. We now describe their relevant parameters. In particular, dBP is defined as
the breakpoint distance between the transmitter and the receiver and it determines the
cutoff span between LOS and NLOS channel condition. σSF represents the standard
deviation in dB of the log-normal random variable that models the shadowing term
of the path loss. sPL represents the path loss slope before and after dBP . Comma-
separated values in the following list indicate values before and after the breakpoint
distance:

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 82

FIGURE 7.2: Setup used for our numerical analysis and for the experi-
ments: Bob is at a fixed distance away from Alice, Alice is sending 802.11
traffic and Eve is passively eavesdropping from different (stationary)

distances on a line perpendicular to Bob.

• Model B: Residen-
tial (e. g. intra-room,
room-to-room).

– dBP = 5 m

– σSF = 3, 4 dB

– sPL = 2, 3.5

• Model D: Office
(e. g. large conference
room, sea of cubes).

– dBP = 10 m

– σSF = 3, 5 dB

– sPL = 2, 3.5

• Model E: Large of-
fice (e. g. multi-storey
building).

– dBP = 20 m

– σSF = 3, 6 dB

– sPL = 2, 3.5

Figure 7.2 shows the setup used for our numerical analysis and for the experiments.
Bob is placed at a fixed distance away from Alice, Eve is placed at different (station-
ary) distances di from Alice, and Alice is constantly sending traffic to Bob. In a two-
dimensional plane, Bob and Eve distance vectors are perpendicular to avoid Eve being
in the main lobe when Alice is using transmit-beamforming. We note that in an indoor
environment multipath is playing a major role than visual of RF line-of-sight conditions
that is why we decided to keep altitude and angle constant and vary only the distance
between Alice and Eve [41].

The path loss model function LP is constructed considering the sum of a free-space
loss component (LFS), a shadowing log-normal component due to obstacles (SF), and
a post breakpoint distance component. All terms vary according to the distance d be-
tween the transmitter and the receiver. We used the following equations from [140]:

LP (d) =

LFS(d) + SF (d) if d ≤ dBP

LFS(dBP) + SF (d) + 35 log10

(
d

dBP

)
otherwise

(7.7)

LFS(d) = 20 log10(d) + 20 log10(f)− 147.5 (7.8)

SF (d) =
1√

2πσSF
exp

(
− d2

2σ2SF

)
(7.9)

Figure 7.3 and Figure 7.4 shows the predicted BER and PER for model B (Residen-
tial) vs. distance between the transmitter and the receiver. Solid lines represent results
for 2.4 GHz and dash-dotted lines represent results for 5.0 GHz. Red lines represent
Eve’s expected BER and PER. The other lines represent Bob’s expected BER and PER
when Alice is using transmit beamforming with two (green lines) and four (blue lines)

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 83

0 20 40 60 80 100 120 140

Distance d [m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
x
p

ec
te

d
B

E
R

dBP

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

FIGURE 7.3: 802.11n Model B (Residential) expected BER estimation us-
ing BPSK. Red lines represent Eve. Green and Blue lines represent Bob

when L=2 and L=4.

antennas. If we focus on the solid lines of Figure 7.4, then we note that a distance be-
tween Alice and Eve dAE of 12.5 m is sufficient to drop Eve’s expected PER from 0 to
0.5 (50% chance of decoding). Furthermore a dAE of 20 m is sufficient to increase Eve’s
PER to 0.98 (0.2% chance of decoding). On the other hand, a dAB of 142 m is required
to experience a PER of 0.5 at Bob’s receiver when Alice is using four antennas (L=4).

Figure 7.5 shows the result of our BER and PER analysis using model D. Figure 7.6
shows the result of our BER and PER analysis using model E. Figure 7.7 shows expected
BER and PER for a free-space path-loss model.

7.3.5 Eavesdropping Analysis Summary

In this section, we argued that in 802.11n/ac downlink a passive eavesdropper (Eve)
using a COTS radio will have a disadvantage in terms of SNR compared to an eaves-
dropper in an 802.11b downlink. This disadvantage is due to different features pro-
vided by recent 802.11n/ac such as MIMO, and spatial diversity. This disadvantage
can be expressed in an SNR decrease at the eavesdropper receiver of 6-41 dB (depend-
ing on the chosen scenario). We also express this disadvantage in terms of the distance
that the eavesdropper has to be closer to the sender to achieve the same PER as a le-
gitimate receiver, which can reach up to 129.5 m. In contrast, there is no such distance
disadvantage for the eavesdropper in 802.11b. Furthermore, we can express the disad-
vantage in terms of PER at the eavesdropper receiver compared to her distance from
the transmitter (dAE). For example, if dAE is 12.5 m, then the PER of Eve is increased to
50%, and if dAE is 20 m, then the PER of Eve is increased to 98%.

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 84

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p

ec
te

d
P

E
R

12.5 m: Eve’s PER = 0.5

20 m: Eve’s PER = 0.98, Bob’s PER = 0

129.5 m from Eve: Bob’s PER 0.5

dBP

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

FIGURE 7.4: 802.11n Model B (Residential) expected PER estimation us-
ing BPSK. Red lines represent Eve. Green and Blue lines represent Bob

when L=2 and L=4.

7.4 Experimental Validation

In this section, we present an experimental evaluation of COTS passive eavesdropping
in 802.11b/n/ac downlink networks. The presented results are in line with the theoret-
ical estimations from Section 7.3.

7.4.1 Experimental Methodology

We focus our experiments on SNR and PER measurements at Eve’s receiver using the
setup presented in Figure 7.2. We keep a ninety-degree angle between Bob and Eve to
ensure that when beamforming is used Eve is outside the beamforming region. We vary
the distance from Bob to Eve (dBE) while keeping the distance from Alice to Bob (dAB)
constant. Table 7.3 lists the parameters that we fix for our experiments with a short
description. As stated in Section 7.3.1 we are not using link-layer encryption (which
does not influence our measurements). Figure 7.8 shows the layout of the indoor office
environment where we conducted the experiments.

Our setup consists of an open access point (Alice) and a laptop (Bob) associated
to it. The access point is a Linksys WRT3200 ACM device, equipped with four an-
tennas and supporting 802.11a/b/g/n/ac. We installed the OpenWrt [171] operating
system on the access point to have more configuration options at our disposal. For
the 802.11b/n experiments (at 2.4 GHz), Bob’s laptop runs Ubuntu 16.04 and has a
TP-Link TL-WN722N wireless adapter. The adapter has a single antenna and sup-
ports 802.11b/g/n. Eve’s laptop runs Ubuntu 16.04, and it uses the same TP-Link TL-
WN722N wireless adapter. Eve’s adapter is not associated with the access point and
it tries to record the traffic from Alice and Bob, in monitor mode using tcpdump. Eve

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 85

0 20 40 60 80 100 120 140

Distance d [m]

0.00

0.05

0.10

0.15

0.20

E
x
p

ec
te

d
B

E
R

dBP

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

(A) Expected BER vs. Distance.

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p

ec
te

d
P

E
R

dBP

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

(B) Expected PER vs. Distance.

FIGURE 7.5: 802.11n Model D (office) BER/PER using BPSK. Red lines
represent Eve. Green and Blue lines represent Bob when L=2 and L=4.

0 20 40 60 80 100 120 140

Distance d [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
x
p

ec
te

d
B

E
R

dBP

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

(A) Expected BER vs. Distance.

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p

ec
te

d
P

E
R

dBP

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

(B) Expected PER vs. Distance.

FIGURE 7.6: 802.11n Model E (Large office) BER/PER using BPSK. Red
lines represent Eve. Green and Blue lines represent Bob when L=2 and

L=4.

TABLE 7.3: Parameters used for the experiments.

Parameter Value Description

PA [dBm] 23 Alice’s transmitted power

N0 [dBm] -91 Mean noise power at the receivers

Chb/n/ac 11, 11, 36 Channels used for 802.11 b/n/ac

dAB [m] 2 Fixed distance from Alice to Bob

~dAE [m] [2.5, 5.0, . . . , 20] Eight distances from Alice to Eve

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 86

0 20 40 60 80 100 120 140

Distance d [m]

0.000

0.002

0.004

0.006

0.008

0.010

E
x
p

ec
te

d
B

E
R

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

(A) Expected BER vs. Distance.

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p

ec
te

d
P

E
R

L=1 @ 5.0 GHz

L=1 @ 2.4 GHz

L=2 @ 5.0 GHz

L=2 @ 2.4 GHz

L=4 @ 5.0 GHz

L=4 @ 2.4 GHz

(B) Expected PER vs. Distance.

FIGURE 7.7: Free Space Path Loss (LOS) BER/PER using BPSK. Red lines
represent Eve. Green and Blue lines represent Bob when L=2 and L=4.

listens to the same channel used by Alice and Bob (channel 11 for b and n, channel 36
for ac).

For the 802.11ac experiments (at 5 GHz), Bob’s laptop runs Ubuntu 16.04 and uses
an Asus USB-AC68 wireless adapter. The adapter has a 3x4:3 antenna configuration
and supports 802.11a/b/g/n/ac. Eve’s laptop is a MacBook Pro with an inbuilt adapter
with 3x3:3 configuration compatible with 802.11a/b/g/n/ac. We use a different adapter
for Eve because the Asus adapter could not be put into monitor mode due to some is-
sues with its driver. The other parameters remain the same as in the 802.11b/n experi-
ments.

For all the experiments, we vary Eve’s distance from Bob and we obtain pcap traces
of the packets transferred from Alice to Bob. The distance between Alice and Bob (dAB)
is fixed at 2 m. We used iperf to generate UDP downlink traffic. We decided to use
UDP to avoid retransmissions at the transport layer. The PER is computed based on
the number of received UDP packets with a valid UDP checksums. We acknowledge
that this approach slightly underestimates the actual PER, as packets with a valid UDP
checksum but incorrect link-layer checksum (FCS) might be included in this calcula-
tion.

~2.5 m

FIGURE 7.8: The layout of the indoor office environment where we con-
ducted the experiments. The green and blue dots indicate the location of

Alice and Bob. The red dots indicate the positions of Eve.

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 87

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

dAE [m]

0

20

40

60

80

100

E
ve

’s
P

E
R

%

Model D prediction 802.11b

Model D prediction 802.11n

Model D prediction 802.11ac

Measured values 802.11b

Measured values 802.11n

Measured values 802.11ac

FIGURE 7.9: Eve’s measured PER (bars) vs. Model D predicted PER
(dashed lines).

The transmission power of Alice is set to 23 dBm. From the experiments, we are
able to obtain the traces from Eve at dAE between 2.5 m and 20 m, using increments
of 2.5 m. We do not change the orientation of Eve with respect to Alice in our tests
to better compare the results. All the devices have the same fixed elevation, without
a visual line-of-sight path between them. The information about the recorded traffic
is obtained from the 802.11 PHY radiotap headers. In the subsequent section we will
compare the experimental results with our estimations from the path loss model D
(Office). Figure 7.5 shows the predicted BER and PER curves at Eve’s receiver (red
curves), and at Bob’s receiver when Alice is using transmit-beamforming with two
(green curves) and four antennas (blue curves).

7.4.2 Comparison between 802.11b/n/ac Networks

For the comparison between 802.11b/n/ac networks, we set a 2.4 GHz band for 802.11b/n
and a 5 GHz band for 802.11ac. To extract the results we capture packets both from Eve
and Alice. We measured two parameters—the PER of the passive eavesdropper, and
her SNR. We compute Eve’s PER by comparing her pcap traces with the ones from Al-
ice. We compute the SNR by dividing the extracted signal strength values by the aver-
age channel noise. We computed the average channel noise using noise measurements
from the access point, and it resulted in -91 dBm. We repeat the same experiments with
the same distances 30 times and we average the results to obtain mean SNR and PER
values, and related errors (standard deviations).

Figure 7.9 shows Eve’s PER measurements and estimated values for dAE varying
from 0 m to 20 m. The red/blue/green bars indicate the experimental results for
802.11b/n/ac, respectively. The dotted lines indicate the predicted estimates (from
model D). It can be observed that Eve’s PER is almost always increasing from b to n and
from n to ac. In particular, the PER starts to increase significantly when dAE is greater

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 88

TABLE 7.4: Results from 802.11n and 802.11ac experiments. dAE is the
distance from Alice to Eve in meters. nr is the total number of runs. µp

is the average number of UDP packets sent by Alice per run. µPER and
σPER are the Eve’s PER means and standard deviations measured in our

experiments for 802.11n (n subscript) and 802.11ac (ac subscript).

dAE [m] nr µp µPERn σPERn µPERac σPERac

2.5 30 894.00 11.13 8.56 45.07 28.25

5.0 30 894.00 6.02 5.06 28.94 35.13

7.5 30 894.00 21.39 15.57 29.64 40.86

10.0 30 894.00 18.52 8.63 32.33 43.88

12.5 30 894.00 27.79 19.97 51.52 30.55

15.0 30 894.00 36.08 18.16 45.23 33.07

17.5 30 894.00 54.33 27.79 50.20 36.80

20.0 30 894.00 70.32 23.46 77.01 28.80

than 15 meters. While such (relatively small-scale) experiments will hardly produce
the exact same results as our theoretical analysis, we observe that the increase in PER
that was predicted by us, for even relatively short distances of around 20 m, can be
observed in practice. In particular, our D model predicted a PER for Eve in an 802.11n
downlink of around 78% when dAE = 20 m, and in our experiments the average PER
was around 70%. For convenience, we tabulate in Table 7.4 the numerical results of
Figure 7.9.

Figure 7.10 shows Eve’s mean SNR varying her distance (dAE) from Alice for 802.11b
(red bars), 802.11n (blue bars) and 802.11ac (green bars). It can be observed that Eve’s
SNR in 802.11n/ac is always smaller than in 802.11b—an effect that we assumed to be
caused by advanced 802.11n/ac physical and link layer features (such as TxBF).

7.4.3 Bob vs. Eve in 802.11n/ac

We conducted a second set of experiments targeting Bob in order to compare his SNR
and PER with respect to Eve’s SNR and PER in 802.11n/ac networks. In this case, we
increased Bob’s distance from Alice. As in the previous experiments, we start from 2.5
m and we end at 20 m, with increments of 2.5 m. Bob is placed at the same location
that Eve was placed in the previous case. In this scenario, we are expecting that Bob
would benefit from 802.11n/ac features. We are not showing the plot for Bob’s PER
compared to the one Eve experienced in Figure 7.9. This is because we observed that
Bob’s PER is very low (less than 1%), and yet not comparable with Eve’s PER. This
confirms our assumption that the intended receiver experiences significantly lower PER
than a passive eavesdropper in 802.11n/ac networks.

Interestingly, as we can see from Figure 7.11a, the mean SNR of Bob and Eve at
various distances are relatively close. In particular, Bob’s SNR in 802.11n is always
higher than Eve’s SNR (as expected). However in the 802.11ac case, we measure a

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 89

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

dAE [m]

0

10

20

30

40

50

60

E
ve

’s
S

N
R

[d
B

]

802.11b

802.11n

802.11ac

FIGURE 7.10: Eve’s measured SNR with respect to dAE .

higher SNR for Eve than Bob. We assume that this is an artifact resulting from the fact
that Eve’s SNR is reported only for successfully received packets.

7.4.4 Eve’s PER and PER Thresholds

We note that even a small decrease in PER could affect a passive eavesdropper de-
pending on the type of exchanged traffic. That is why we decided to analyze Eve’s PER
compared to different PER thresholds and distances dAE . Table 7.5 shows the results
of our analysis for 802.11b/n/ac. For example, if we fix the threshold to 15%, then
Eve’s PER in 802.11ac is above the threshold in at least 33% of all cases. The same holds
for 802.11n except for the 5m measurement. With regards to 802.11b, fixing the same
15% threshold, we note that Eve’s PER does not exceed the threshold in more than 16%
of all cases. This is another way to confirm our predictions about 802.11n/ac passive
eavesdropping.

7.4.5 Eve with Two COTS Radios in 802.11n

We argued earlier that attackers with COTS radios will not be able to benefit from
advanced 802.11n/ac physical layer and link layer features, and discussed an attacker
with a single COTS radio. We now discuss a passive eavesdropper with multiple COTS
radios in an 802.11n downlink. The attacker aggregates the eavesdropped packets to
reduce the number of packets lost (e. g. due to deep fading). In Figure 7.11b, we show
the PER for an attacker with two COTS radios. The radios are placed at a distance of
50cm from each other (to avoid mutual coupling). Note that we used a different data
set from the previous experimental section, and we repeated this experiment 30 times.
It can be observed that such a scheme reduces the number of lost packets for the attacker
(as expected). However, the PER in the aggregated case is still higher than the 802.11b
one, especially at distances greater than 5m. For a threshold PER of 15%, the PER for

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 90

TABLE 7.5: Eve’s PER vs. PER Thresholds vs. Distances. Columns rep-
resent different distances from Eve to Alice (dAE). Rows represent dif-
ferent PER thresholds. Comma-separated values represent the rounded-
down percentage of experimental runs where Eve’s PER was above the

threshold for 802.11b, n, and ac.

5.0 [m] 7.5 [m] 10.0 [m] 12.5 [m] 15.0 [m] 17.5 [m]

5% 33, 36, 50 10, 100, 33 20, 100, 33 36, 100, 90 43, 100, 80 60, 100, 96

10% 0, 26, 40 0, 73, 33 6, 83, 33 30, 90, 83 16, 96, 70 30, 100, 70

15% 0, 3, 36 0, 56, 33 6, 53, 33 16, 66, 76 0, 90, 63 13, 100, 60

20% 0, 0, 33 0, 43, 33 3, 36, 33 13, 53, 56 0, 76, 56 6, 96, 53

25% 0, 0, 33 0, 30, 33 3, 26, 33 10, 40, 53 0, 66, 56 0, 83, 53

30% 0, 0, 33 0, 20, 33 0, 13, 33 6, 30, 50 0, 60, 43 0, 73, 53

35% 0, 0, 30 0, 13, 30 0, 3, 33 3, 30, 43 0, 56, 43 0, 63, 50

40% 0, 0, 30 0, 10, 30 0, 0, 33 0, 23, 43 0, 40, 43 0, 53, 46

45% 0, 0, 26 0, 10, 30 0, 0, 33 0, 16, 43 0, 26, 43 0, 46, 46

50% 0, 0, 23 0, 6, 26 0, 0, 33 0, 16, 33 0, 16, 36 0, 43, 46

the aggregated case is higher than the threshold in about 23% of the runs, compared to
6% for 802.11b.

7.4.6 Summary of 802.11b/n/ac Experiments

Overall, we were able to experimentally confirm our main findings: a) there is a sig-
nificant increase of the PER of a passive eavesdropper attacking 802.11n/ac networks
compared to 802.11b ones. In our experiments, the difference was approximately 60%
increased PER for 802.11n and 70% increased PER for 802.11ac at 20 m distance. In
addition, the PER rises from around 12.5 m onward, similar to our predictions based
on the theoretical analysis. We also confirmed that the PER experienced by the attacker
is related to the non-cooperating Alice. In particular, legitimate receivers at the same
locations were able to receive traffic with close to zero PER.

7.5 Related Work

There are several empirical studies for 802.11 networks. Most of them focus on specific
link layer [122] or physical layer [161] features. There are also more generic empiri-
cal studies, for example about enterprise WLAN [36], intrusion detection [102], denial
of service [21] co-existence [80] and signal manipulation [143] Anyway, those studies
neither focuses on wireless security nor compares end experimentally evaluate eaves-
dropping in various 802.11 networks.

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 91

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Distance from Alice [m]

0

10

20

30

40

50

60

S
N

R
[d

B
]

Bob - 802.11n

Eve - 802.11n

Bob - 802.11ac

Eve - 802.11ac

(A) 802.11n and 802.11ac SNR comparison between
Bob and Eve at different distances from Alice.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

dAE [m]

0

20

40

60

80

100

P
E

R
%

Eve1

Eve2

Combined

(B) 802.11n PER of Eve using two COTS radios. The
green bars represent combined PER.

FIGURE 7.11: Experimental results from Section 7.4.3 (a) and Sec-
tion 7.4.5 (b).

An interesting aspect of eavesdropping is to study how to optimally place a set of
antennas in a multiple users scenario to obtain the maximum amount of private infor-
mation. In [183] Wang et al compare co-located vs. distributed eavesdropping schemes
performance with respect to Eve’s number of antennas and the presence of a guard
zone. The de-facto standard countermeasure against eavesdropping (complementary
to physical layer security) is cryptography. Several studies were done to secure [14]
and break [27, 151] cryptographic systems used by 802.11 such as WEP and WPA.

7.6 Conclusions

In this work, we investigated the impact of novel 802.11n/ac features over a passive
eavesdropper using COTS devices. We focused on downlink networks in infrastruc-
ture mode. We performed a theoretical discussion, a numerical simulation and several
experiments comparing the Signal-to-Noise-Ratio and Packet-Error-Rates of the eaves-
droppers in 802.11b/n/ac. We showed that theoretically the eavesdropper’s effective
SNR is decreased by 6-41 dB in 802.11n/ac networks with four antennas (L = 4), which
translates to a Packet-Error-Rate increase of up to 98% at a distance of 20 m between
sender and eavesdropper. To obtain same Packet-Error-Rates as in a legitimate receiver,
the attacker’s maximal distance has to be reduced by 129.5 m in the case of 802.11n. In
our practical experiments, we showed that the predicted effects occur in practice (al-
though we were not able to exactly reproduce the theoretic predictions). Eve’s PER for
n was at least 20% higher than for b, and more than 30% for ac (with increasing impact
over distances greater than 10m).

We conclude that the evolution of the 802.11 standard actually introduced several
physical and link layer features, such as MIMO and spatial diversity, that might de-
grade the performance of a passive eavesdropper. If properly exploited those features
could be used as a part of a defense-in-depth strategy as a complement to well-known

Chapter 7. Practical Evaluation of COTS Eavesdropping in 802.11b/n/ac WLAN 92

eavesdropping defense mechanism. Nevertheless, we understand that further investi-
gations are necessary to characterize the benefits against stronger attacker models and
in more complex scenarios. We leave those discussions to future work.

93

Chapter 8

Nearby Threats: Reversing,
Analyzing, and Attacking Google’s
‘Nearby Connections’ on Android

Keywords: Google, Android, WiFi, Bluetooth, RE, Attacks.

8.1 Introduction

Google’s Nearby Connections API enables Android (and Android Things) developers
to offer proximity-based services in their applications. A proximity-based service al-
lows users of the same application to share (sensitive) data only if they are “nearby”,
e. g. within Bluetooth radio range. The API uses Bluetooth BR/EDR, Bluetooth LE and
Wi-Fi and it claims to automatically use the best features of each depending on the type
of communication required. For example, it uses Bluetooth for short-range low-latency
communications and Wi-Fi for medium-range high-bandwidth ones. The API provides
two different connection strategies (P2P_STAR and P2P_CLUSTER), that allows clients
(discoverers) and servers (advertisers) to be connected using different topologies.

The Nearby Connections API is implemented as part of Google Play Services. Google
Play Services is a proprietary, closed-source and obfuscated library that allows Google
to provide the same services to any Android and Android Things application, regard-
less of the version of the operating systems. The API is compatible with any Android
device, version 4.0 or greater, and it is updated by Google without user interaction [5].
An attacker who can exploit this API can target (at least) any application using Nearby
Connections in any Android mobile and IoT device. This implies a large attacker sur-
face and represents a critical threat with severe consequences such as data loss, auto-
matic spread of malware, and distributed denial of service.

The design specifications and implementation details of the Nearby Connections
API are not publicly available. The only public source of information about the library
is a few blog posts detailing sporadic security guarantees [72, 69]. According to these
sources, the API uses encryption by default, but it does not mandate user authentica-
tion. The API automatically manages and uses multiple physical layers and this does
not sound trivial. The API uses a custom application layer connection mechanism. A
device can simultaneously be a client and a server, and can connect to different ap-
plications at the same time. A Nearby Connections application is uniquely identified

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 94

by a string named serviceId and clients and servers with different serviceId (or
connection strategies) will not be able to connect.

Proximity-based services similar to the Nearby Connections API have been investi-
gated in the context of wireless sensor networks for a long time, together with related
security challenges [99, 141, 97]. In particular, eavesdropping and wormhole attacks
are often discussed, which would allow the attacker to read or manipulate the traffic
exchanged by nearby devices. Typically, such attacks are considered on link or net-
work layer, i.e., on the routing or path finding protocols. As Nearby Connections is
providing an application-layer service, the setting is different to most established work
in the field, although similar security challenges does apply. In addition to attacks on
routing, authentication of (mobile) users is known to be challenging, together with key
exchange to establish a secure channel [35, 110].

In this work, we assess the security of the Nearby Connections API. We analyze
the API by reverse-engineering its closed-source and obfuscated implementation. To
perform this task we use advanced techniques such as dynamic binary instrumenta-
tion and manipulations of raw packets. We develop compatible implementations of
Nearby Connections client and server. Based on the knowledge gained, we identify
and implement several attacks. The impact of these attacks ranges from intercepting
and decrypting application-layer data (using man-in-the-middle or impersonation), to
forcing the establishment of TCP connections between the victim and arbitrary (non-
nearby) devices. In addition, the attacker is able to introduce system wide default
network routes on the victims’ devices. As a result, the attacker is able to redirect a
victim to an access point under his control and gains access to all the Wi-Fi traffic of the
victim, including the traffic generated by applications that are not using the Nearby
Connections API.

We summarize our main contributions as follows:

• We reverse engineer and perform the first security analysis of the closed-source
and obfuscated Nearby Connections API.

• We identify and perform several attacks grouped into two families: connection
manipulation and range extension attacks. The attacks can be performed by very
weak adversaries and have severe consequences such as remote connection ma-
nipulation and data loss.

• We design and implement REarby, a toolkit that enables reverse engineering and
attacking the Nearby Connections API. We released parts of the toolkit as open
source in our proof of concept code1.

Our work is organized as follows: in Section 8.2, we introduce the Nearby Connec-
tions API. We present a security analysis of the API based on our reverse engineering
in Section 8.3. In Section 8.4, we describe the connection manipulation and range ex-
tension attacks. The implementation details of REarby are discussed in Section 8.5. We
present the related work in Section 8.6. We conclude the chapter in Section 8.7.

1Repository at https://github.com/francozappa/rearby.

https://github.com/francozappa/rearby

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 95

8.2 Background

8.2.1 Introduction to the Nearby Connections API

The Nearby Connections API is used to develop proximity-based applications. These
applications provide services to users within radio range (approx 100 m) [71] and con-
sider these users as “nearby”. Typical use cases of the API are: file sharing, gaming, and
streaming of content. The API enables proximity-based services using a combination
of three wireless technologies: Bluetooth BR/EDR, Bluetooth LE and Wi-Fi. Bluetooth
BR/EDR stands for basic rate and extended data rate and it is typically used by high-
end mobile devices. Bluetooth LE stands for low energy and it is typically used by
low-end and high-end mobile devices [162]. In the rest of the chapter we indicate Blue-
tooth BR/EDR with Bluetooth and Bluetooth LE with LE. For more information about
the differences between the two refer to [162].

The Nearby Connections API is available on Android and Android Things. An-
droid Things is a new operating system based on Android developed by Google that
targets IoT devices. In this work, we focus on the Android implementation of the API.
The latest major release of the API was introduced in June 2017 in Global Position-
ing System (GPS) version 11.0 [72]. The GPS library is a core proprietary product of
Google, and relies partly on the security through obscurity model. The main functional
benefit and potential security weakness of the GPS library is that it allows its services
(including Nearby Connections) to be usable by any application, across different An-
droid versions from 4.0 onwards. The updates of the GPS library are pushed by Google
and do not require user interaction to complete [5].

In a nearby connection there are two types of actor: the discoverer and the advertiser.
The former acts as a client, while the latter acts as a server. Figure 8.1 describes the
actions performed by these actors while using the Nearby Connections API. The client
attempts to discover a service identified by a serviceId. The server announces the
service (serviceId) along with a name (ncname), using one of two different strategies
described in a moment. Two actors are allowed to connect if they use the same strategy
and serviceId. A single device can discover and advertise different services at the
same time. Each serviceId is meant to uniquely identify an application. Google
suggests to set it equal to the package name of the application [68].

If the client discovers the server then he sends a connection request to the server
and the actors can optionally authenticate themselves. The actors mutually accept to
connect and then the connection is established. The connection is always requested,
initiated and established over Bluetooth. Once the connection is established, the actors
optionally switch to a different physical layer, e. g. to Wi-Fi, and then they start ex-
changing (encrypted) data payloads. The API provides three types of payloads: BYTE,
FILE, and STREAM. The first type is used to transmit chunks of bytes, the second files
and the third streams of data. Each payload type has a related proximity-based service
associated, e. g. use FILE payloads in a file-sharing application. Each actor addresses a
payload to a receiver with a unique four-digit string called endpointId. The nearby
connection is closed whenever one of the two actor disconnects.

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 96

Discoverer (client)

D

Advertiser (server)

A

Discover strategy,
serviceId

Advertise strategy,
ncname, serviceId

Discovery

Connection Request

Key Exchange Protocol

Optional Authentication

Connection Establishment

Key Derivation Functions

Optional Physical Layer Switch

Exchange Encrypted Payloads

Disconnect

FIGURE 8.1: The Nearby Connections API has two types of actors: the
Discoverer (client) and the Advertiser (server). It uses application layer

encryption and optional user authentication.

FIGURE 8.2: Nearby Connections connection strategies using Bluetooth
and Wi-Fi. On the left, three P2P_STAR topologies; on the right,
two P2P_CLUSTER topologies. In each case, all actors use the same

serviceId.

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 97

8.2.2 Nearby Connections Strategies

The nearby connection strategy dictates the connection topology and the physical layer
switch. At the time of writing, the Nearby Connections API provides two strategies:
P2P_STAR and P2P_CLUSTER. There is also a third one called P2P_POINT_TO_POINT
that it is still not public. In Figure 8.2 we show three examples of P2P_STAR links and
two P2P_CLUSTER links. These links are established after the actors already completed
all the phases from Figure 8.1 up to the optional physical layer switch. The P2P_STAR
strategy has three types of links: (1) the advertiser acts as a soft access point and the
discoverer connects to it; (2) the discoverer is the master and the advertiser is the slave
of a Bluetooth network; and (3) both actors are connected to the same access point and
they exchange payloads through it. There are only two options for the P2P_CLUSTER
strategy: (3) is the same as for the P2P_STAR strategy and (4) several actors can connect
to each other using Bluetooth in a mesh-like network.

Hence, P2P_CLUSTER allows the connection of multiple discoverers and advertis-
ers while P2P_STAR allows only one advertiser to be connected with multiple discov-
erers. Google recommends to use P2P_STAR for higher throughput and P2P_CLUSTER
for more flexible network topologies. In any case, the actors can exchange payloads
without being connected to the Internet and two discoverers always communicate
through an advertiser (even when using the P2P_CLUSTER strategy).

8.3 Reversing and Analyzing Nearby Connections

In this section we describe our understanding of the Nearby Connections API after
reverse engineering its implementation on Android. Our main goal is to perform a
security assessment of the API because of its wide attack surface and complex inter-
actions between wireless technologies. Unfortunately, the implementation of the API
is proprietary, closed-source, and obfuscated. To overcome these obstacles we devel-
oped REarby a toolkit to reverse engineer the API, its implementation is presented
Section 8.5. For the remainder of this work, we refer to the target of our analysis as “the
library”. We note that, without access to the source code or specification of the library,
we cannot claim that our findings are always complete.

The analysis of the library allowed us to identify and perform several attacks that
we present in Section 8.4. In particular, we use details of the authentication and inter-
actions between advertisers and discoverers (Section 8.3.1) to perform attacks in which
we impersonate them and we manipulate Nearby Connections traffic. Details of the
Nearby Connections keep-alive mechanism (Section 8.3.5) are required for range ex-
tension attacks. The physical layer switch (Section 8.3.6) is exploited to manipulate
system-wide routing tables of victims.

8.3.1 Discovery and Connection Request

A nearby connection is always requested using Bluetooth, regardless of the nearby
connection parameters. Discovering and advertising are done in a deterministic and
predictable way without using encryption. An attacker who posses a clone of the li-
brary can pretend to be any advertiser and discoverer of any application, and he can
use any Bluetooth compatible device to request a connection. The Bluetooth connection

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 98

Discoverer (client)

D

Advertiser (server)

A

Discover strategy,
serviceId

Advertise strategy,
ncname, serviceId

BT Inquiry

BT Inquiry Response

LE Scan

LE Extended Report

Discovery

BT Create Connection

BT Connection Complete

SDP Request

SDP Response

BT Secure Simple Pairing

BT Secure Simple Pairing

BT Link Key Calculation

BT Link Key Calculation

BT Enable Encryption

BT Enable Encryption

RFCOMM ch5

RFCOMM ch5

Bluetooth Connection

FIGURE 8.3: Nearby Connections Request. BT is Bluetooth BR/EDR.
Secure Simple Pairing provides link-layer encryption.

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 99

uses Secure Simple Pairing (SSP) with a link key that is not authenticated and not per-
sistent. Indeed, an attacker could insert himself as a man in the middle in the Bluetooth
link and he can force the re-establishment of the link key at any time.

An example of a nearby connection request is shown in Figure 8.3. The advertiser
(server) advertises a strategy, a serviceId and a ncname. The discoverer (client)
discovers a strategy and a serviceId. To find each other, both have to look for the
same serviceId, and use the same strategy. The server to be discovered changes its
Bluetooth name (btname) and sets custom LE extended report. The btname is changed
to a string that depends on the strategy, the endpointId, the serviceId, and the
ncname. btname is computed as follows:

btname = unpad(b64encode(strategy_code ‖ endpointId ‖
SHA256(serviceId)[:3] ‖ separator ‖ ncname))

The strategy_code is 0x21 for P2P_STAR and 0x22 for P2P_CLUSTER. The SHA256
of serviceId[:3] are the first three bytes of the SHA256 digest of the serviceId.
The unpad function is used to remove the padding characters (=) from the base64
encoded string. For example, a server with strategy P2P_CLUSTER, serviceId =
sid, endpointId = aXCV and ncname = name advertises with the following btname:
IjR1ZEE0s2QAAAAAAAAABG5hbWU. The length of btname depends on ncname, in our
experiments we discovered that the maximum length of the name is 131 bytes. The bt-
name is easy to spot (by an attacker) because it always starts with I and contains the
AAAAAAAAA separator. On the LE side, the same parameters are used in a similar way
to set the LE extended report. Some devices (such as the Nexus 5) do not support
LE extended reports and only use Bluetooth while advertising. The client (while dis-
covering) sends Bluetooth inquiries and enables LE scanning. The server sends back
Bluetooth inquiry responses containing btname and LE extended reports. The client
discovers the server (endpoint) through these responses and establishes a Bluetooth
connection with it.

After the Bluetooth connection is established, the client sends a service discov-
ery protocol (SDP) request using a custom uuid. SDP is a protocol used to discover
Bluetooth services. The information about each service is obtained by sending a SDP
request containing its correspondent universally unique identifier (uuid) [162]. The
nearby connection custom uuid is computed from the MD5 digest of the serviceId
and some extra string manipulations. For example, if serviceId = sid then the
uuid is b8c1a306-9167-347e-b503-f0daba6c5723. The client receives an SDP
response containing the following fields: name = serviceId, host = Bluetooth ad-
dress of the server and RFCOMM port = 5. RFCOMM is a serial cable emulation
transport protocol based on ETSI TS 07.10 providing similar guarantees of TCP [162].

The client uses Secure Simple Pairing (SSP), with optional Secure Connections, to
share a secret with the server. The Secure Connections mode is enabled if both radio
chips support it. The client and the server compute the same link key, and they agree
on enabling link-layer encryption. Finally, the client establishes a link-layer encrypted
RFCOMM connection with the server, always on port 5.

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 100

Discoverer (client)

D

Advertiser (server)

A

Generate skD, pkD
Pick ND

cD = Hash(pkD)

Generate skA, pkA
Pick NA

Kep1: 1, endpointId, ncname, version

Kep2: 2, ND, cD, algo

Kep3: 3, NA, pkA

Kep4: 4, pkD

Verify cD
(Sx, Sy) = skA · pkD
key = kdf(Sx, NA, ND)

(Sx, Sy) = skD · pkA
key = kdf(Sx, NA, ND)

FIGURE 8.4: Nearby Connections Key Exchange Protocol (KEP) based
on ECDH (secp256r1). algo is always AES_256_CBC-HMAC_SHA256.

8.3.2 Key Exchange Protocol (KEP)

We found that the library uses a custom key exchange protocol (KEP) based on elliptic-
curve Diffie Hellman (ECDH) on the secp256r1 (NIST P-256) curve. ECDH is a good
choice for mobile embedded system because it is faster and requires shorter keys than
finite field Diffie-Hellman. The secp256r1 curve is recommended by NIST [18], how-
ever some crypto experts have questioned the security of this curve [22]. The key ex-
change protocol consists of four packets that we refer to as: Kep1, Kep2, Kep3, and
Kep4. Table 8.1 lists their most relevant fields. This protocol provides several secu-
rity guarantees, e. g. fresh shared secrets, negotiation of strong crypto primitives for
confidentiality and integrity and usage of sequence numbers and sanity checks of the
elliptic curve points. However, we identified a number of issues, e. g. lack of a standard
key derivation function (such as HKDF), weird usage of nonces and commitments, and
transferring of useless key material (y coordinate of the public keys).

The key exchange protocol is shown in Figure 8.4. The client generates a key pair
skD, pkD and the server generates a key pair skA, pkA. sk is the private (secret) key,
and pk is the public key. Each public key is a point on the secp256r1 curve. The client
and the server generate two 32 byte random nonces ND and NA. The client builds
Kep1 and Kep4. The relevant fields of Kep1 are: 1 (sequence number), endpointId,
ncname and what we believe is the Nearby Connections version number (version).
In our experiments we observed protocol version 0x2 and 0x4. The relevant field of
Kep4 are: 4 (sequence number) and pkD (the client’s public key).

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 101

TABLE 8.1: Main Fields of the Key Exchange Protocol packets. (Gx, Gy)
is the generator point for the ECDH curve.

Packet Field Description Default value(s)

Kep1 sn Sequence number 1
endpointId Discoverer id None
ncname Discoverer name None
version Protocol version 0x02, 0x04

Kep2 sn Sequence number 2
ND Nonce Random
cD Commitment SHA512(Kep4[4:])
algo Negotiated ciphers AES_256_CBC-HMAC_SHA256

Kep3 sn Sequence number 3
NA Nonce Random
xA x-coord of pkA x-coord from (Gx, Gy) · skA
yA y-coord of pkA y-coord from (Gx, Gy) · skA

Kep4 sn Sequence number 4
xD x-coord of pkD x-coord from (Gx, Gy) · skD
yD y-coord of pkD y-coord from (Gx, Gy) · skD

The client computes an hash of pkD (based on SHA512) that should be a commit-
ment on his public key. We define the commitment as cD. Then, the client builds Kep2

that has the following relevant fields: 2 (sequence number), ND, cD and a string that
we define as algo. The value of algo is fixed to AES_256_CBC-HMAC_SHA256. This
means that the nearby connection application layer uses encryption and message au-
thentication codes, and that strong crypto primitives are used: AES256 in CBC mode,
and HMAC with SHA256. The presence of algo could indicate that the developers are
planning to introduce cipher negotiation as a feature, otherwise there seems little point
in exchanging this information. The server builds Kep3 that has the following relevant
fields: 3 (sequence number), NA, and pkA (the server’s public key). Note that Kep4 is
build before Kep2 because the latter contains cD (commitment) that is computed over
the former.

After that, the network traffic takes place (over link layer encrypted RFCOMM).
The client sends Kep1 and Kep2 to the server, the server answers with Kep3, and the
client sends Kep4. In our experiments these packets are always exchanged in this or-
der. Sometimes, Kep1 is split and transmitted using two sequential RFCOMM pack-
ets. The server verifies the client’s commitment using cD and Kep4. Afterwards, both
nodes compute the (same) secret point in the curve, defined as (Sx, Sy), by multiply-
ing their own private key with the public key of the other. The x coordinate of the
secret point is used as key (shared secret). We refer to this as Sx. The library does
not use any (recommended) ECDH key derivation functions such as HKDF or NIST-
800-56-Concatenation-KDF [18]. The details about how we managed to discover it are
presented in Section 8.5. After the client and the server completed the KEP, the nearby
connection is initiated (but not yet established).

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 102

FIGURE 8.5: Computation of the authentication token.

8.3.3 Optional Authentication and Connection Establishment

Before establishing a nearby connection, the client and the server can optionally authen-
ticate each other. The Nearby Connections authentication is based on a five-digit token,
containing uppercase alphabetic characters, numbers, and special characters from the
base64 alphabet (search space of size 385). The token is generated by the library, it de-
pends on Sx (the shared key), and it is computed by the client and the server even if it is
not used. It is up to the Nearby Connections application developer to decide whether
and how to utilize it. At the time of writing, the nearby connection sample code from
Google ignores the authentication tokens [75]. In a proper application, the users would
have to visually authenticate each other, e. g. they must confirm that they are seeing the
same token on both screens.

The reversed procedure to generate the authentication token consists of five se-
quential steps. These steps are described with the help of Figure 8.5. First, a SHA256
hash of Sx is computed. Second, this hash is used as the key for a SHA256 HMAC, from
now on HMAC, of the UKEY2 v1 auth string. This string reveals that the generation
procedure of the token is versioned (v1), and it is labeled as auth. Third, the output of
the first HMAC is used as a key in a second HMAC. The input of the second HMAC
is the concatenation (‖) of a subset of Kep2, a subset of Kep3 and the integer 0x01. This
means that the entropy used in the computation of token is fresh and comes both from
the client (Kep2) and the server (Kep3). This choice provides security guarantees such
as protection against replay attacks. In the fourth step, the output of the second HMAC
is base64 encoded and truncated to its first five characters (bytes). Finally, token is
generated by converting these five characters to uppercase. An example of token is
ABC12.

In the connection establishment both devices have to accept the connection, and it
does not matter who accepts it first. In our experiments, we observed that the devices
always use the same payloads:

• 0x000000080801120408053200 to keep the pre-connection alive

• 0x0000000a0801120608021a020800 to accept a connection

• 0x0000000b0801120708021a0308c43e to reject a connection

As in the connection request phase, Wi-Fi and Bluetooth LE are not used to establish
a nearby connection. We discovered that devices with the same ncname are allowed

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 103

FIGURE 8.6: Computation of kD2A and kA2D.

to connect, this means that in a nearby connection only the endpointId uniquely
identifies a node. While testing the connection establishment phase we discovered in-
teresting things about the serviceId. Any advertiser leaks its serviceId if queried
with a generic SDP request, e. g. using sdptool browse adv_btaddress. More-
over, two devices from different applications can use the same serviceId to establish
a connection. This means that it is possible to predict the serviceId of any applica-
tion. We also discovered that the library is still using an undocumented serviceId
named __LEGACY_SERVICE_ID__.

8.3.4 Key Derivation Functions (KDFs)

We were able to reverse the key derivation functions responsible for the creation of the
session, encryption, and message authentication code keys. When a nearby connection
is established then the client and server compute two symmetric session keys that we
define as kD2A and kA2D. The former is used to secure communications from the client
to the server, and the latter from the server to the client. The reversed computation
of these keys is shown in Figure 8.6. The description of the steps is similar to the one
presented in Section 8.3.3: it starts with SHA256 hashing and then it uses a chain of
HMACs. We omit the detailed description of the steps, as it is similar to the one of
Figure 8.5.

However, it is important to note four points from Figure 8.6. First, from the UKEY2
v1 next string we deduce that the library uses the same version number of the auth
phase (see Figure 8.5), and it labels this phase as next. Second, the only thing that
differentiates kD2A from kA2D is their last HMAC step: the former uses client as part
of the input and the latter uses server. Third, kD2A and kA2D depend on Kep2, Kep3

and Sx, indeed they enjoy the same security benefits of token. Finally, the library uses
one session key for each direction of communication, this is a good practice in protocol
design, e. g. it prevents reflection attacks.

The session keys are used to derive the encryption and the message authentication
code (MAC) keys. In other words, kD2A and kA2D generate respectively the keys to
encrypt, decrypt, sign and verify packets from the client to the server and from the

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 104

FIGURE 8.7: Computation of the AES (symmetric) key.

FIGURE 8.8: Computation of the MAC key and the MAC.

server to the client. The generation of the AES key from a session key is a two step
process (involving HMAC), which is shown in Figure 8.7. The string ENC:2 indicates
that this process is computing an encryption key, but it is not clear yet what does 2 refer
to.

The computation of the MAC key is similar to the AES key computation and it is
shown in Figure 8.8. In this case, we find the SIG:1 string. Again, the string indicates
that a signing key is computed, but it is not clear what does the 1 refers to. Figure 8.8
describes also how the library does compute a MAC. Nearby Connections uses encrypt-
then-mac with HMAC using SHA256. The MAC is computed using the MAC key and as
input a subset of a payload containing the ciphertext (ct), an initialization vector (iv)
and some constant fields.

Using dynamic binary instrumentation (discussed in Section 8.5), we see that the li-
brary for each application layer packet re-derives the same AES and MAC keys from the session
keys. In particular, every time a node wants to transmit a packet, the library performs
the following: it (re)computes the AES key, encrypts the payload, (re)computes the
MAC key, signs the payload and then builds the packet. Similarly, when it is time to re-
ceive a packet, the library (re)computes the MAC key, verifies the MAC, (re)computes
the AES key and decrypts the packet’s payload. In our opinion, these repeated com-
putations are not very efficient. It is possible that the library’s developers intend to
use a key evolution mechanism where the AES and MAC keys could change over time
according to some logic. However, in our experiments the library recomputes always
the same keys. Another reason to use these procedures may relate to key storage in

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 105

Dennis

D

Alice

A

Eka: cD2A = 1

t = 0 s

5 s

30 s

Eka: cD2A = 2

Eka: cD2A = 3

Eka: cD2A = 4

Eka: cD2A = 5

Eka: cD2A = 6

Disconnect

FIGURE 8.9: Nearby Connections Encrypted Keep-Alive. The period is
5 seconds, the timeout is 30 seconds.

memory. It is true that—if you recompute a key and discard it when you do not need
it—the key stays in memory for a shorter time. But the library needs the session keys
kD2A and kA2D to be able to compute the AES and the MAC keys and these are stored
in memory in any case.

8.3.5 Exchange Encrypted Payloads

Once a nearby connection is established and the session keys are derived, the protocol
can be considered symmetric, e. g. it does not matter who is the discoverer (client) and
the advertiser (server). To emphasize this, we rename the discoverer to Dennis and
the advertiser to Alice. Dennis uses kD2A and Alice uses kA2D and their communica-
tions are encrypted (AES256 in CBC) and authenticated (HMAC with SHA256) at the
application layer, and encrypted at the link-layer (SSP).

Dennis and Alice keep the connection alive by using the encrypted keep-alive pro-
tocol (EKA) shown in Figure 8.9. From our experiments we discovered that a nearby
connection has a connection timeout of 30 seconds. In Section 8.4, we discuss how that can
be exploited to extend the range of our attacks. The EKA protocol uses a custom type
of packet that we define as Eka. These packets have a constant header and contains a
directional counter.

As we can see from Figure 8.9, Dennis initializes a directional counter, that we de-
fine as cD2A, to 1. cD2A counts the number of packets sent from Dennis to Alice. Dennis
builds an Eka packet and send it to Alice. Alice maintains her local cD2A counter and
checks that her local values match with the ones that she gets in the packets. Dennis
sends an Eka packet every 5 seconds incrementing each time cD2A. Alice may answer
with either an Eka packet (that counts the packets in the other direction) or a packet
containing a nearby connection payload. Dennis closes the nearby connection after
sending six sequential unanswered Eka packets. This means that the EKA timeout is

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 106

Algorithm 1 Nearby Connections Physical Layer Switch.

Require: D = discoverer, A = advertiser
Ensure: Bluetooth uses RFCOMM, Wi-Fi uses TCP, no secrets shared between Wi-Fi

and Bluetooth
if A is connected to an hotspot then

A tells D how to switch to a shared WLAN
D contacts A over TCP

else if strategy is P2P_STAR then
if D and A support Wi-Fi Direct then

A tells D how to switch to Wi-Fi Direct
else

A tells D how to switch to hostapd
end if
D connects to A’s soft AP
D contacts A over TCP

else
A and D continue to use Bluetooth

end if

30 seconds. The same encrypted keep alive protocol happens asynchronously from Al-
ice to Dennis using cA2D to count the packets sent from Alice to Dennis and Dennis
maintains its local cA2D counter.

While the nearby connection is alive, Dennis and Alice are able to exchange pay-
loads. There are three types of payloads: BYTE, FILE, and STREAM. The payloads are
sent either using Bluetooth (over RFCOMM) or Wi-Fi (over TCP) and they are encoded
using custom application layer packets. Each payload generates at least two packets
and each one contains the appropriate directional counter value (either cD2A or cA2D).
The packets are sent sequentially without application layer acknowledgments. A node
can send and receive payloads asynchronously. A payload packet contributes to keep
the connection alive in the EKA protocol.

8.3.6 Optional Physical Layer Switch

Once a nearby connection is established, the client and the server might switch from
Bluetooth to Wi-Fi. From our experiments, we see that the physical layer switch can
be predicted and manipulated. We misuse this mechanism to perform a connection ma-
nipulation attacks (CMA) presented in Section 8.4. The switch always happens from
Bluetooth to one of the three Wi-Fi modes supported by the library. We define these
modes as: shared WLAN, hostapd, and Wi-Fi Direct. In the shared WLAN case the
devices use a common access point: see (3) and (4) in Figure 8.2. In the hostapd and
Wi-Fi Direct cases the advertiser acts as a soft AP, see (1) in Figure 8.2. The nearby con-
nection documentation tells us that the library uses a real-time heuristic to determine
when and how to switch.

Algorithm 1 describes the result of our reversing of the physical layer switch. The
advertiser is always in charge of the switch and there is no negotiation with the dis-
coverer. In order to bind the Wi-Fi and the Bluetooth connections we would expect

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 107

the library sharing secret material between Bluetooth (that is encrypted at the link and
application layers) and Wi-Fi. If this material exists it should be exchanged before
switching to Wi-Fi. However, in our experiments we observed that this is not the case
because the devices after the switch only use application layer encryption over TCP. Hence,
the shared WLAN link is cryptographically weaker than the Bluetooth link because it
uses only one layer of encryption. We believe that the automatic Wi-Fi switch is en-
forced by autoUpgradeBandwidth=true (a private parameter of the library that we
reversed).

From Algorithm 1 we note that the shared WLAN mode has the highest priority
regardless of the nearby connection strategy. If shared WLAN is used we expect to see
the exchange of network parameters over the Bluetooth link before the Wi-Fi switch.
In our experiments we observed such exchange (and show how to leverage this as
an attacker in Section 8.4). Wi-Fi Direct and hostapd are used only if the strategy is
P2P_STAR. Both modes allow the advertiser to act as a soft access point without an
Internet connection. The discoverer should be able to find its essid and connect to
the it. When any of these modes is in use we expect to see an exchange of information
about the soft AP over Bluetooth before the Wi-Fi switch. In our experiments we ob-
served this information, and we leverage this mechanism in our attacks. Wi-Fi Direct
uses a constant essid (22 Bytes, always starts with DIRECT-) and a WPA2 password
(8 Bytes). hostapd uses a randomized base64-encoded essid (28 Bytes) and a WPA
password (12 Bytes). In both cases, the advertiser sends the essid and the password
to the discoverer. When the connection is terminated, the library does not restore the
original hotspot configuration of the device.

The capability of the Nearby Connections library to switch from Bluetooth to Wi-
Fi has side effects that are valuable for an attacker. In Section 8.4, we show how to
abuse this capability to to switch on the Bluetoothand Wi-Fi (hotspot) antenna of the
victims without user interaction. Another side effect of the switch is that the library can
be misused to interrupt any active Wi-Fi connection of any node by forcing a physical
layer switch to either hostapd or Wi-Fi Direct. In both cases the victim loses Internet
connectivity.

8.4 Attacking Nearby Connections

In this section we present the attacks that we on the Nearby Connections library, based
on our reverse engineering presented in Section 8.3. To perform the attacks we de-
veloped several tools that are presented in Section 8.5. We classify our attacks in two
families: connection manipulation attack (CMA), and range extension attack (REA).
The attack families are orthogonal, and can be combined. We remark that our attacks
manipulate application layer packets to reach some goal and indeed are effective regardless the
specific Android application that is using Nearby Connections as a service. In general, if an
attack is effective regardless whether the attacker is the discoverer or the advertiser, we
indicate the victim and the attacker as nodes.

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 108

FIGURE 8.10: Soft AP manipulation attack. On the left, before the at-
tack the victim is connected to the Internet through a benign AP. On the
right, after the attack the adversary has forced the victim to connect to a
malicious access point, and inserted a new default route in the victim’s
routing table. The adversary is able to intercept and manipulate any
Internet-bound traffic sent by any application on the victim’s phone that

is using Internet.

8.4.1 Threat Model

Our attack scenario includes the victims (discoverer and advertiser) and an attacker
who posses at least one device in range with the victims. The legitimate discoverer and
the advertiser establish nearby connections as described in Section 8.2 and Section 8.3.
The attacker has two main goals. He wants to tamper with nearby connections nodes from
remote locations, e. g. establish a nearby connection between two countries. This violates
the basic assumption that only devices within radio range can establish nearby connec-
tions. In addition, he wants to manipulate these connections in arbitrary ways, e. g. install
himself as man-in-the-middle, take over existing connection, manipulate the Bluetooth
and Wi-Fi radio of the victims, and break or weaken the security mechanisms of the
nearby connection library.

The attacker has the same knowledge of the library that we describe in Section 8.3.
He is capable of using custom advertiser and discoverer and to craft raw packets con-
forming to the nearby connection protocol using tools similar to the ones developed
(REarby). An extensive discussion of the tools is presented in Section 8.5. The attacker
can create his own Wi-Fi access point, and jam the wireless links. He does not have
access to the victims devices e. g. he is not able to install rootkits or malicious appli-
cations. The applications and libraries used by the victims are considered safe. The
attacker does not require advanced and potentially expensive instrumentation such as
software-defined radio, directional antennas, rooted devices and commercial wireless
sniffers.

8.4.2 Connection Manipulation Attacks

In principle, a node should establish nearby connections only with trusted nodes. How-
ever, the library presents several authentication issues that allows an attacker to manip-
ulate a connection. In particular, the library does do not perform any of the following:
authenticate the Bluetooth link key, bind the Bluetooth and the Wi-Fi physical layers,

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 109

mandate user authentication, and authenticate the application that is requesting the
nearby connection service. The documentation suggests that “encryption without au-
thentication is essentially meaningless” [70] and we argue that this is the case here.

Advertiser and discoverer impersonation The library uses only the strategy and the
serviceId to uniquely identify a nearby connection, and both are predicable. We can
learn the serviceId of an application by using a Bluetooth SDP request and we can
guess the strategy (only 2 options). As a result, we can impersonate both an advertiser
advertising a proper serviceId and a discoverer trying to connect to a legitimate
advertiser. This capability is a stepping stone to perform more elaborate attacks that
we present in this section.

Application layer MitMs The lack of proper authentication of the library allows us
(the attacker) to man-in-the-middle two victims at the application layer. We accomplish
this attack using a malicious advertiser and a malicious discoverer at the same time.
The malicious advertiser gets discovered by the first victim discoverer, and the mali-
cious discoverer connects to the second victim advertiser (the two malicious devices
forward traffic between each other). Then, we can complete two parallel Bluetooth
pairings with the victims, we perform the application layer phases of Figure 8.1, and
we compute the shared secrets and the keys (session, encryption and mac) for each vic-
tim. As a result we are able to decrypt, observe, manipulate and encrypt the application
layer packets.

If the advertiser requests a physical layer switch we launch a parallel man-in-the-
middle attack on the Wi-Fi link. We know the credentials of the Wi-Fi network because
they are transmitted by the victim advertiser on the Bluetooth link from which we are
eavesdropping. The Wi-Fi MitM is accomplished using a simple ARP spoofing attack.
Wi-Fiis not encrypted at the ink layer, thus we can continue to observe and manipulate
the application layer traffic also in the Wi-Fi link. We note that the MitM works even be-
tween a victim discoverer and a victim advertiser using different Android applications
(different serviceId).

Shared WLAN manipulation The attacker can also manipulate the physical layer
switch phase, regardless the nearby connection strategy. As shown in Algorithm 1, the
advertiser dictates when and how to switch (from Bluetooth to Wi-Fi) and the discov-
erer “blindly” follows him. For example, if the advertiser is connected to an hotspot it
will tell the discoverer its IP address and TCP port (shared WLAN Wi-Fi mode). How-
ever, we are able to redirect a discoverer to an arbitrary IP and TCP port by intercepting
and crafting the legitimate physical layer switch packet sent by the advertiser before the
switch. The details about how we craft this and other types of packets are presented
in Section 8.5.6. As result of this attack, the victim activates her Wi-Fi interface, asso-
ciates to a legitimate AP and establishes a TCP session with a target determined by
the attacker. Note that, this attack work regardless the connection strategy because the
shared WLAN mode is picked as first choice in both, and the IP spoofed by the attacker
can be outside of the local area network of the victim.

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 110

Soft AP manipulation If the target nearby connection uses the P2P_STAR strategy,
the advertiser might act as a soft access point without an Internet connection, and pro-
vide the AP credentials to the discoverers. We take advantage of this feature to redi-
rect discoverers to an access point controlled by the attacker that is connected to the Internet.
Figure 8.10 shows the victim connection status before (left side) and after the attack.
Initially, the victim (discoverer) is connected to a legitimate AP. The victim connects
to an advertiser using the P2P_STAR strategy. The attacker either is the advertiser or
performs the application layer MitM attack presented earlier. The attacker also controls
a rogue access point.

Once the nearby connection is established the attacker manipulates either hostapd
or Wi-Fi Direct switch packets to redirect the victim to the rogue access point i. e. he
provides the victim valid essid and password. Then, the victim associates to the mali-
cious AP (see Figure 8.10), and configures her Wi-Fi interface with values supplied by
the attacker over DHCP. That enables the attacker to install a new default route (along
with suitable IP configurations), which redirects all the victim’s traffic to the rogue AP.
Indeed, the attacker is able to monitor and tamper with all the Wi-Fi traffic coming from
the victim. The traffic includes the packets generated by other applications (not using
the library) requiring Internet access such as email clients, web browsers, and cloud ser-
vices. We understand that most of such traffic is secured with TLS, but we still believe
that this attack is novel and it has serious consequences. In particular, the attacker can
target a single application using Nearby Connections to get access to all Wi-Fi network
traffic of the victim. The attacker then can perform traffic analysis even on encrypted
packets [170].

DoS Internet connections The library does not care about the connection status of the
devices before using hostapd and Wi-Fi Direct. We leverage this fact to launch a denial
of service (DoS) attack on several discoverers at the same time. The attack assumes
that one ore multiple discoverers are connected to a legitimate Wi-Fi network and they
want to use Nearby Connections. The attacker uses a malicious advertiser to connect
to the victims and tell them to use either hostapd or Wi-Fi Directand to connect to a
non-existent AP. The victims try to connect to the AP, and as a result they lose their
Internet connectivity. This issue indirectly affects all the applications running on the
victim’s device that need an Internet connection [73].

Alter network configurations and radios The library does not backup and restore
the original wireless network configuration. In particular, the original soft AP (Wi-Fi
hotspot) configuration is overwritten by the library and the newly created network is
appended to the list of known ones. This allows an attacker to append and overwrite
arbitrary essid-password pairs in the network configuration files of the victim. The
attack technique is the same presented in the DoS attack paragraph.

The library is able to switch on the Bluetooth and Wi-Fi antenna of device that is
using it, and it does not switch them off after a disconnection. We use this feature ma-
nipulate the antennas of a victim device, regardless of the nearby connection strategy.
We are able to switch on the Bluetooth antenna of the victim by establishing a nearby

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 111

connectionand then disconnecting. We can switch on the Wi-Fi antenna of any discov-
erer by using our custom advertiser to connect with the victim and by telling the him
to switch to Wi-Fi and to disconnect.

8.4.3 Range Extension Attacks (REA)

The Nearby Connections API is supposed to be used by devices that are effectively
nearby. The documentation suggests that they have to be within radio range (approx
100 m) [71]. However, at the time of writing, the library does not enforce strict time require-
ments between connected nodes and does not check the geo-location of the nodes. The library
uses an encrypted keep alive protocol with a generous timeout of 30 seconds, which
is more than enough to forward traffic across continents without aborting the nearby
connection [62, 115]. This allows an attacker to violate the fundamental assumption
that nearby-connected devices are in proximity by extending the range of any nearby
connection.

The attacker can extend the range of any attack presented in Section 8.4.2. In our ex-
periment we implement a wormhole-attack to extend the range of the application layer
MitM attack. We are able to let two non-nearby victims talk between each other, i. e. the
two victims might be advertising and discovering nearby connection in different con-
tinents. The attacker uses two devices, each one in range with a victim, to perform the
MitM attack and then forwards the traffic over the Internet creating a wormhole. The
attacker has 30 seconds to forward the packets in each direction (to keep the connection
alive) and he could even answer to the keep alive requests himself, effectively allowing
arbitrary delays. This attack technique takes inspiration from [86, 175, 62]. Range ex-
tension is not advisable because a victim perceives a false sense of security given by the
fact that a nearby connection is supposed to be within radio range and it is expected
not to use Internet. In other words, a victim might better trust a proximity-based secure
service than a secure cloud service.

8.5 REarby Toolkit Implementation

To implement the attacks presented in Section 8.4, we require several capabilities based
on our analysis of the Nearby Connections library presented in Section 8.3. These ca-
pabilities includes: establishment of wireless connections using Bluetooth and Wi-Fi,
ad-hoc usage of cryptographic primitives, creation and manipulation manipulation of
raw network packets, and usage of custom (security) protocols. For these purposes, we
develop a set of tools and we group them in a project that we call REarby.

REarby includes custom discoverer and advertiser capable to perform all the nearby
connection phases from Figure 8.1. It includes a dynamic binary instrumenter to an-
alyze the library at runtime and a packet dissector usable to decode and manipulate
application layer packets. REarbyalso contains a custom Android application that we
developed for testing. Out toolkit makes use of three programming languages: Python,
Java, and JavaScript and contains approximately 2000 lines of code. It requires a min-
imal setup, e. g. a laptop running Linux. In the rest of this section we explain how we
implement all the phases of a nearby connection.

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 112

8.5.1 Discovery and Connection Request

We manage all the Bluetooth operations with the bluetooth Python module. The
discovery phase begins using the discover_bt function. This function returns the
Bluetooth’s name (btname) of all the discoverable devices that are in range. The cus-
tom discoverer detects the presence of any advertiser by looking at btnames. It ex-
tracts the strategy, endpointId and ncname using in reverse the btname formula
of Section 8.3.1. The custom advertiser starts an RFCOMM server on port 5 using
BluetoothSocket(RFCOMM). Then the custom advertiser computes the custom uuid
based on the serviceId and it starts an SDP server advertising the uuid using the
serviceId as the name of the SDP service. The custom advertiser waits for the discov-
erers and manages each of them with separate sockets. All the Bluetooth connections
are encrypted at the link layer using the shared secret computed from the secure simple
pairing (SSP).

8.5.2 Key Exchange Protocol (KEP)

To initiate a connection the custom discoverer computes the custom uuid (based on the
serviceId) and performs an SDP request using that uuid. The response contains the
serviceId and the Bluetooth address of the advertiser. The custom discoverer uses
an RFCOMM socket to connect the advertiser on port 5. The bluetooth’s Python
module manages the low level details of the RFCOMM socket.

Once connected, the custom advertiser and the custom discoverer respectively com-
plete the Nearby Connections key exchange protocol as in Figure 8.4. To be able to send
meaningful KEP packets we perform several steps. We develop a custom Android ap-
plication based on [74] and we use it to generate samples of KEP packets. We capture
the unencrypted packets using the HCI snoop log functionality of Android. HCI is
the host controller interface protocol spoken by the Bluetooth host (the OS) and the
Bluetooth controller (the radio chip) [162]. We analyze the packets using scapy [25], a
network analysis tool. We discover that the plaintext is serialized using custom serial-
ization mixing variable and fixed length fields. This is confirmed by the fact that the
library uses the Serializable Java class.

Listing 1 shows the Kep3 Scapy dissection class that we use to decode the serialized
data in the Kep3 packets. Kep3 is sent from the advertiser to the discoverer and it
contains four relevant fields: the sequence number (sn), a nonce (nA), the coordinates
of the public key of the advertiser (xA, yA). These values are serialized using variable
length fields. A variable length field has a leading Byte containing the length of the
field in Bytes concatenated with the actual Bytes containing the value of the field. For
example, nA_len indicates that nA is a 32 Byte nonce and its value is referenced by nA.
The same holds for xA and yA. We use similar classes to decode Kep1 Kep2, and Kep4.
From the decoded KEP packets we realize that the library uses ECDH on the secp256r1
curve, by testing the public keys contained in Kep3 and Kep4 against standard elliptic
curves.

The next task is to correctly compute the shared secret (Sx). To understand how to
compute it we use dynamic binary instrumentation (DBI), a technique that allows to
monitor a target application (process) in real-time by attaching a monitoring process to

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 113

Listing 1 Kep3 scapy dissection class for Kep3.
1 class Kep3(Packet):
2 name = "Kep3: adv -> dsc"
3 fields_desc = [
4 IntField("len1", None),
5 XByteField("sep1", 0x08),
6 ByteField("sn", 3),
7 XByteField("NC_SEP", NC_SEP),
8 ByteField("len2", None),
9 StrFixedLenField("NC_HEAD2", NC_HEAD2, length=3),

10 BitFieldLenField("nA_len", None, size=8, length_of="nA"),
11 StrLenField("nA", "", length_from=lambda pkt:pkt.nA_len),
12 StrFixedLenField("NC_KEP3_HEAD", NC_KEP3_HEAD, length=3),
13 ByteField("len3", None),
14 StrFixedLenField("NC_HEAD2", NC_HEAD2, length=3),
15 ByteField("len4", None),
16 XByteField("NEWLINE", NEWLINE),
17 BitFieldLenField("xA_len", None, size=8, length_of="xA"),
18 StrLenField("xA", "", length_from=lambda pkt:pkt.xA_len),
19 XByteField("NC_SEP", NC_SEP),
20 BitFieldLenField("yA_len", None, size=8, length_of="yA"),
21 StrLenField("yA", "", length_from=lambda pkt:pkt.yA_len),

it. To implement our DBI we use Frida [148] a reverse-engineering toolkit that has na-
tive compatibility with Android. After observing our Android application generating
ECDH shared secrets we find out that the cryptographic operations are managed by a
separate Android process called com.google.android.gms.nearby.connection
that we indicate with ncproc.

Using Frida we list all the Java classes and shared libraries of ncproc and isolate
all the security related classes, methods and functions. OpenSSLECDHKeyAgreement
reveals that the library is using only the x coordinate of Sx as the key, i. e. it is not using
a standard key derivation function. These information enables us to initiate a nearby
connection by implementing the Nearby Connections KEP protocol from Figure 8.4.
We use the Python cryptography module to implement all the cryptographic proce-
dures. Note that, our setup allows us to tamper with and fuzz every field of the KEP
packets such as the public keys, algo, version, endpointId and the nonces.

8.5.3 Optional Authentication and Connection Establishment

After the nearby connection is initiated we compute token to perform the op-
tional user authentication phase. Listing 2 shows how we monitor and overload the
encodeToStringmethod of the android.util.Base64 class [49] using Frida. This
method is called in the last step of the token computation from Figure 8.5 and it
takes an array of bytes as input and returns its base64 encoding representation as
a string. The most important lines of code are from line 6 to 16. In line 6, we use
B64ENC_COUNT to count how many times this method is called at runtime. In line 8
we use print_backtrace to (recursively) see who called the method using which pa-
rameters. In line 10-11 we save the original input of the method as a string in inp_str,
and we print it on our console. The original method is called in line 13 with its original

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 114

Listing 2 Frida (JavaScript API) function to overload
android.util.Base64.encodeToString.
1 // input is a byte[], return value is a String
2 function Base64_encodeToString() {
3 Java.perform(function () {
4 var target = Java.use("android.util.Base64");
5 target.encodeToString.overload('[B', 'int').implementation =

function(inp, flags) {↪→

6 B64ENC_COUNT += 1
7

8 print_backtrace();
9

10 var inp_str = JSON.stringify(inp)
11 console.warn("B64ENC " + B64ENC_COUNT + " inp: " + inp_str)
12

13 var retval = this.encodeToString(inp, flags);
14 console.warn("B64ENC " + B64ENC_COUNT + " out: " + retval)
15

16 return retval
17 };
18 });
19 }

inputs (inp, flags) and its return value is saved into retval. In line 14-16, we print
the return value and return the control to the ncproc process.

We use functions similar to Listing 2 to reconstruct the computation of token from
Figure 8.5. We implement its computation in our custom advertiser and discoverer
using standard Python modules. To establish the connection we implement the pre-
connection keep alive, the connection acceptance and rejection reusing the constant
payloads mentioned in Section 8.3.3.

8.5.4 Key Derivation Functions

Our dynamic binary instrumentation setup is quite powerful. It allows us to observe,
tamper with, and reimplement every method call used by any Android process, such
as ncproc. All of this without having access to the implementation of the Nearby
Connections library. Using our DBI we reconstruct all the key derivation functions
presented in Section 8.3.4, and we implement them using standard Python modules.
This enables our custom discoverer and advertiser to establish a nearby connection
and compute the correct session (Figure 8.6), encryption (Figure 8.7), and MAC keys
(Figure 8.8).

8.5.5 Encrypted Keep-Alive and Payloads

An established nearby connection is kept alive using the encrypted keep-alive (EKA)
protocol from Figure 8.9. The EKA protocol requires the knowledge of the crypto-
graphic stack used to encrypt-then-mac the application layer packets and the capability
to build meaningful application layer packets. For example, we have to maintain the

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 115

Listing 3 Backtrace of the ncproc crypto stack. Long lines are truncated with three
dots (. . .). The library is using javax.crypto that calls conscrypt that calls BoringSSL.
1 at com.google.android.gms.org.conscrypt...
2 at com.google.android.gms.org.conscrypt...
3 at com.google.android.gms.org.conscrypt...
4 at com.google.android.gms.org.conscrypt...
5 at com.google.android.gms.org.conscrypt...
6 at javax.crypto.Cipher.doFinal(Cipher.java:1502)
7 at blah.a(:com.google.android.gms...
8 at blam.a(:com.google.android.gms...
9 at blam.a(:com.google.android.gms...

10 at bkyj.a(:com.google.android.gms...
11 at bkyg.b(:com.google.android.gms...
12 at acxt.c(:com.google.android.gms...
13 at acyg.a(:com.google.android.gms...
14 at acyd.run(:com.google.android.gms...
15 at pmz.run(:com.google.android.gms...
16 at java.util.concurrent.ThreadPoolExecutor...
17 at java.util.concurrent.ThreadPoolExecutor...
18 at ptb.run(:com.google.android.gms...
19 at java.lang.Thread.run(Thread.java:818)

directional counters (cA2D, cD2A) as explained in Section 8.3.5. Implementing the EKA
protocol is a key requirement to perform the attacks presented in Section 8.4.

We reverse the cryptographic stack of the library by looking at the backtrace of its
lowest level cryptographic methods e. g. NativeCrypto_EVP_CipherFinal_ex().
Listing 3 shows the backtrace with its nineteen (19) stack frames (truncated lines are ter-
minated with three dots). Starting from the top we see that the low level crypto func-
tions are managed by conscrypt (line 1-5). Conscrypt is an open-source Java security
providers developed by Google [67]. Conscrypt in turns uses BoringSSL [66], Google’s
open-source fork of OpenSSL. Note that BoringSSL is native code. Going down the
backtrace we see the use of javax.crypto module (line 6). This module provides high
level interfaces for Java cryptographic operations. The next 9 stack frames (line 7-15)
are created by the Nearby Connections library and the names of the classes and the
methods are obfuscated, most probably using ProGuard [79]. The lowest part of the
backtrace contains calls to thread methods.

Overall, the cryptographic stack of the library uses standard implementations that
we are able to replicate using the Python cryptography module. Using our crypto
stack we create valid ciphertext using the symmetric key computed as in Figure 8.7
and valid message authentication code using the key as in Figure 8.8. We use scapy to
build properly formatted application layer packets that include the length fields, the
ciphertext, the mac and the appropriate directional counter (either cA2D or cD2A).

8.5.6 Optional Physical Layer Switch

The correct implementation of the physical layer switch is paramount to perform the
attack presented in Section 8.4. There are two packets of interests that the advertiser
has to send to the discoverer to tell him when and how to switch from Bluetooth to
Wi-Fi. We use two scapy dissection classes, that we call WL and HA, to manage these

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 116

packets. Their relevant fields are shown in Table 8.2. WL is used with the shared WLAN
mode, our custom advertiser (the attacker) sends it to the discoverer to redirect him
to arbitrary ip and tcp_port. This packet is usually sent just after the start of the
EKA protocol. HA is used with the Wi-Fi Direct and the hostapd. By spoofing the
essid and password fields in of this packet our custom advertiser redirects the victim
(discoverer) to an arbitrary soft AP. Usually, this packet is sent by the advertiser after
three Eka packets.

8.5.7 Summary

Our REarby toolkit allows to analyze and attack the Nearby Connections library. It
includes several components such a custom discoverer and advertiser, dynamic binary
instrumentation based on Frida, and packet dissector based on scapy. Our custom dis-
coverer and advertiser are able to discover, advertise, request, initiate, authenticate, ac-
cept/reject, establish a connection and tell when and how to switch to a different physi-
cal layer. They maintain the connection alive by speaking the EKA protocol. They send
BYTE and FILE payloads. They allow the attacker to specify the strategy, serviceId,
ncname and endpointId and to modify and fuzz any dissected packets.

Table 8.2 summarizes the most important scapy dissection classes that are in use.
Table 8.3 lists the Java classes and methods that we monitored while reversing ncproc.
Table 8.4 lists the device that we use for our analysis and attacks.

TABLE 8.2: scapy dissection classes used to reverse the Nearby Connec-
tions library. The count field is the application layer directional counter.

ClassName Relevant Fields Usage Direction

Kep1 sn, eid, ncname, version ECDH D −→ A
Kep2 sn, ND, cD, algo ECDH D −→ A
Kep3 sn, NA, xA, yA ECDH D←− A
Kep4 sn, xD, yD ECDH D −→ A
Eka iv, ct, mac App Layer D←→ A
KA count App Layer D←→ A
Pay iv, ct, mac App Layer D←→ A
Pt pid, ptype, pay_len, pay, count App Layer D←→ A
Pt2 pid, ptype, pay_len, pt_len, count App Layer D←→ A
WL ip, tcp_port, count Wi-Fi D←− A
HA essid, password, count Wi-Fi D←− A
Error emsg Misc D←→ A

8.6 Related Work

We are not aware of related work on the Nearby Connections API (for Android devices,
or others). In general, a large amount of academic work has investigated security is-
sues in wireless standards, such as cryptographic weaknesses in early versions of Blue-
tooth [94], and practical sniffing attacks on Bluetooth [164]. Similarly, cryptographic

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 117

TABLE 8.3: Security related classes and methods used by ncproc.

ClassName MethodName Usage

OpenSSLCipher engineDoFinal() AES256 in CBC
engineInit() HMAC with SHA256
engineUpdate() HMAC with SHA256
engineDoFinal() HMAC with SHA256

OpenSSLMessageDigestJDK engineUpdate() SHA1, SHA2
engineDigest() SHA1, SHA2

OpenSSLECDHKeyAgreement engineInit() ECDH
engineDoPhase() ECDH
engineGenerateSecret() ECDH

NativeCrypto RAND_bytes() RNG

Base64 encodeToString() Encode base64
decode() Decode base64

TABLE 8.4: Devices used in our Nearby Connections experiments and
attacks. GPS is Global Positioning System. SSP stands for Secure Simple

Pairing and SC for Secure Connections.

Name Library Bluetooth Soft AP

Android 6.0.1
Motorola G3 (x2) GPS 12.8.74 4.1 SSP with SC Wi-Fi Direct, hostapd
Nexus 5 (x2) GPS 12.8.74 4.1 SSP hostapd

Linux 4.4
Thinkpad x1 Bluez 5.49-4 4.2 SSP hostapd, airbase-ng

attacks have been found on the confidentiality of Bluetooth LE [156] and early versions
of IEEE 802.11/Wi-Fi [27], and later improvements such as WPA [172]. Lately, addi-
tional key reinstallation attacks were discovered for WPA2 [178], which compromise
key freshness. The impact of physical layer features (such as MIMO and beamforming
in recent standard amendments) on practical eavesdropping on 802.11 was discussed
in [9]. In addition to analysis of standards, libraries that implement the standards have
also been investigated. For example, a number of vulnerabilities in Apple and Android
devices’ Bluetooth stack were identified in 2017, dubbed “BlueBorne” [15].

In this chapter our focus is not on attacking any design or implementation aspect
of Bluetooth and Wi-Fi standards. Instead, we point out that introduction of libraries
such as Nearby Connections can lead to unexpected side effects for traffic of all appli-
cations on the victim, e.g., by disconnecting hosts, redirecting traffic via and attacker,
and can lead to effects such as resource exhaustion (due to attackers manipulating ra-
dio states). Usage of third-party libraries has already been studied for the Android
ecosystem, e.g., in [16]. However, our work investigates a library developed directly
by Google through its Google Play Services service, pushed to end users. The misuse
of cryptographic primitives on Android is also well-known [55]. While in the case of

Chapter 8. Reversing, Analyzing, and Attacking Google’s Nearby Connections 118

Nearby Connections, the developer (or user) is not responsible for choosing the cryp-
tographic primitives, he (or she) has to trust the library to be securely designed.

In [127], the authors investigated security issues arising from interactions of mali-
cious apps with paired mobile devices, e.g., via Bluetooth, essentially related to lack of
access controls. We argue that Nearby Connections poses an even bigger threat, as it is
ubiquitously supported and optimized to require no user interactions.

A rich set of literature about attacks on routing schemes in the context of wireless
sensor networks is available [86]. We argue that in this work, the system attacked
is not a (multi-hop) routing scheme, as it is intended for direct communication be-
tween nearby hosts. Practical wormhole attacks that extend communication range from
nearby hosts to remote hosts have been demonstrated in the context of car keys [62] and
NFC communication [115].

8.7 Conclusion

In this work, we present the first security analysis of the proprietary, closed-source and
obfuscated Nearby Connections API by Google. The API is installed and available to
applications on any Android device from version 4.0 onwards. It is also available on
Android Things, an OS developed by Google for IoT devices. The API connects nearby
devices using multiple physical layers. In order to perform our analysis, we studied its
public API, and reverse engineered its implementation on Android. We found and im-
plemented several attacks (classified as connection manipulation and range extension
attacks).

For example, in the Soft AP manipulation attack, we trick the victim (discoverer)
to disconnect from its currently associated access point, and connect to an access point
controlled by the attacker. Consequently, the attacker is able to push a default route
in the victim’s network configuration (via DHCP) and to redirect all his Wi-Fi traffic
(not only from the Nearby Connections application) to him. This is a novel attack,
in which a vulnerability in the Nearby Connections API, is impacting all the network
communication of the victim.

Our implementation of the attacks is based on REarby, a toolkit we developed to
reverse engineer and analyze the Nearby Connections API. REarby includes custom
discoverer and advertiser capable of performing the nearby connection phases. It also
includes a dynamic binary instrumenter, a packet dissector and a custom Android
application. Our findings were acknowledged by Google in a responsible disclosure
process, and we released a proof of concept of the Soft AP attack as open source at
https://github.com/francozappa/rearby. Our findings show that in the cur-
rent state, Google’s Nearby Connections API is not only open to attack, but actively
posing a threat to all Android applications using it (the library is automatically in-
stalled and updated without user interaction) and even to Android applications that
do not use it.

https://github.com/francozappa/rearby

119

Chapter 9

The KNOB is broken: Exploiting
Low Entropy in the Encryption Key
Negotiation of Bluetooth BR/EDR

Keywords: Bluetooth, Encryption, Entropy, Attack, Firmware.

9.1 Introduction

Bluetooth BR/EDR (referred for the rest of this chapter as Bluetooth), is a short-range
wireless technology widely used by many products such as mobile devices, laptops,
IoT and industrial devices. Bluetooth provides security mechanisms to achieve au-
thentication, confidentiality and data integrity at the link layer [162, p. 1646].

The security and privacy of Bluetooth has been attacked and fixed several times,
going all the way back to Bluetooth v1.0. [94, 190]. Several successful attacks on the
(secure simple) pairing phase [160, 81, 24] have resulted in substantial revisions of the
standard. Attacks on Android, iOS, Windows and Linux implementations of Bluetooth
were also discussed in [15]. However, little attention has been given to the security of
the encryption key negotiation protocol, e. g. the Bluetooth security overview in the latest
Bluetooth core specification (v5.0) does not mention it [162, p. 240].

The encryption key negotiation protocol is used by two Bluetooth devices to agree
on the entropy of the link layer encryption key. Entropy negotiation was introduced
in the specification of Bluetooth to cope with international encryption regulations and
to facilitate security upgrades [162, p. 1650]. To the best of our knowledge, all versions
of the Bluetooth standard (including the latest v5.0 [162]) require to use entropy values
between 1 and 16 bytes. The specification of Bluetooth states this requirement as fol-
lows: “For the encryption algorithm, the key size may vary between 1 and 16 octets (8
- 128 bits)” [162, p. 1650]. Our interpretation of this requirement is that any device to
be standard-compliant has to support encryption keys with entropy varying from one
to sixteen bytes. The attack that we present in this work confirms our interpretation.

The encryption key negotiation protocol is conducted between two parties as fol-
lows: the initiator proposes an entropy value N that is an integer between 1 and 16,
the other party either accepts it or proposes a lower value or aborts the protocol. If
the other party proposes a lower value, e. g. N − 1, then the initiator either accepts it
or proposes a lower value or it aborts the protocol. At the end of a successful nego-
tiation the two parties have agreed on the entropy value of the Bluetooth encryption

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 120

key. The entropy negotiation is performed over the Link Manager Protocol (LMP), it
is not encrypted and not authenticated, and it is transparent to the Bluetooth users be-
cause LMP packets are managed by the firmware of the Bluetooth chips and they are
not propagated to higher layers [162, p. 508].

In this chapter we describe, implement and evaluate an attack capable of making
two (or more) victims using a Bluetooth encryption key with 1 byte of entropy without
noticing it. The attacker then can easily brute force the encryption key, eavesdrop and
decrypt the ciphertext and inject valid ciphertext without affecting the status of the
target Bluetooth piconet. In other words, the attacker completely breaks Bluetooth BR/EDR
security without being detected. We call this attack the Key Negotiation Of Bluetooth
(KNOB) attack.

The KNOB attack can be conducted remotely or by maliciously modifying few
bytes in one of the victim’s Bluetooth firmware. Being a standard-compliant attack
it is expected to be effective on any firmware implementing the Bluetooth specifica-
tion, regardless of the Bluetooth version. The attacker is not required to posses any
(pre-shared) secret material and he does not have to observe the pairing process of the
victims. The attack is effective even when the victims use the strongest security mode
of Bluetooth (Secure Connections). The attack is stealthy because the application using
Bluetooth and even the operating systems of the victims cannot access or control the
encryption key negotiation protocol (see Section 9.3.2 for the details).

After explaining the attack in detail, we implement it leveraging our development
of several Bluetooth security procedures to generate valid link and encryption keys,
and the InternalBlue toolkit [114]. Our implementation allows a man-in-the-middle at-
tacker to intercept, manipulate, and drop LMP packets in real-time and to brute force
low-entropy encryption keys, without knowing any (pre-shared) secret. We have dis-
closed our findings about the KNOB attack with CERT and the Bluetooth SIG, and fol-
lowing that, we plan to release our tools as open-source at https://github.com/
francozappa/knob. This will enable other Bluetooth researchers to take advantage
of our work.

We summarize our main contributions as follows:

• We develop an attack on the encryption key negotiation protocol of Bluetooth
BR/EDR that allows to let two unaware victims negotiate a link-layer encryption
key with 1 byte of entropy. The attacker then is able to brute force the low entropy
key, decrypt all traffic and inject arbitrary ciphertext. The attacker does not have
to know any secret material and he can target multiple nodes and piconets at the
same time.

• We demonstrate the practical feasibility of the attack by implementing it. Our
implementation involves a man-in-the-middle attacker capable of manipulating
the encryption key negotiation protocol, brute forcing the key and decrypting the
traffic exchanged by two (or more) unaware victims.

• All standard-compliant devices should be vulnerable to our attack, including the
ones using the strongest Bluetooth security mode. In order to demonstrate that
this problem has not somehow been fixed in practice, we test more than 14 differ-
ent Bluetooth chips and find all of them to be vulnerable.

https://github.com/francozappa/knob
https://github.com/francozappa/knob

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 121

• We discuss what changes should be made, both to the Bluetooth standard and its
implementation, in order to counter this attack.

Our work is organized as follows: in Section 9.2 we introduce the Bluetooth BR/EDR
stack. In Section 9.3 we present the Key Negotiation Of Bluetooth (KNOB) attack. An
implementation of the attack is discussed in Section 9.4. We evaluate the impact of our
attack in Section 9.5 and we discuss the attack and our proposed countermeasures in
Section 9.6. We present the related work in Section 9.7. We conclude the chapter in
Section 9.8.

9.2 Background

9.2.1 Bluetooth Basic Rate/Extended Data Rate

Bluetooth Basic Rate/Extended Data Rate (BR/EDR), also known as Bluetooth Clas-
sic, is a widely used wireless technology for low-power short-range communications
maintained by the Bluetooth Special Interest Group(SIG) [162]. Its physical layer uses
the same 2.4 GHz frequency spectrum of WiFi and (adaptive) frequency hopping to
mitigate RF interference. A Bluetooth network is called a piconet and it uses a master-
slave medium access protocol. There is always one master device per piconet at a time.
The devices are synchronized by maintaining a reference clock signal, defined as CLK.
Each device has a Bluetooth address (BTADD) consisting of a sequence of six bytes.
From left to right, the first two bytes are defined as non-significant address part (NAP),
the third byte as upper address part (UAP) and the last three bytes as lower address
part (LAP).

To establish a secure Bluetooth connection two devices first have to pair. This pro-
cedure results in the establishment of a long-term shared secret defined as link key,
indicated with KL. There are four types of link key: initialization, unit, combination
and master. A initialization key is always generated for each new pairing procedure. A
unit key is generated from a device and utilized to pair with every other device, and its
usage is not recommended because it is insecure. A combination key is generated using
Elliptic Curve Diffie Hellman (ECDH) on the P-256 elliptic curve. This procedure is de-
fined as Secure Simple Pairing (SSP) and it provides optional authentication of the link
key. Combination keys are the most secure and widely used. A master key is generated
only for broadcast encryption and it has limited usage. The master key is temporary,
while the others are semi-permanent. A semi-permanent key can persist until a new
link key is requested (link key is bonded) or it can change within the same session (link
key is not bonded). In this work we deal with combination link keys generated using
authenticated SSP.

The specification of Bluetooth defines custom security procedures to achieve con-
fidentiality, integrity and authentication. In the specification their names are prefixed
with the letter E. In particular, a combination link key KL is mutually authenticated
by the E1 procedure. This procedure uses a public nonce (AU_RAND) and the slave’s
Bluetooth address (BTADDS) to generate two values: the Signed Response (SRES) and
the Authenticated Ciphering Offset (ACO). SRES is used over the air to verify that two
devices actually own the same KL.

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 122

The symmetric encryption key KC is generated using the E3 procedure. When the
link key is a combination key E3 uses ACO (computed by E1) as its Ciphering Offset
Number (COF) parameter, together with KL and a public nonce (EN_RAND). E1 and
E3 use a custom hash function defined in the specification of Bluetooth with .̋ The hash
function is based on SAFER+, a block cipher that was submitted as an AES candidate
in 1998 [117].

Once the encryption key KC is generated there are two possible ways to encrypt
the link-layer traffic. If both devices support Secure Connections, then encryption is
performed using a modified version of AES CCM. AES CCM is an authenticate-then
encrypt cipher that combines Counter mode with CBC-MAC and it is defined in the
IETF RFC 3610 [88]. As a side note, the specification of Bluetooth defines a message
authentication codes (MAC) with the term message integrity check (MIC). If Secure
Connections is not supported then the devices use the E0 stream cipher for encryp-
tion. The cipher is derived from the Massey-Rueppel algorithm and it is described in
the specification of Bluetooth [162, p. 1662]. E0 requires synchronization between the
master and the slaves of the piconet, this is achieved using the Bluetooth’s clock value
(CLK).

Modern implementations of Bluetooth provides the Host Controller Interface (HCI).
This interface allows to separate the Bluetooth stack into two components: the host and
the controller. Each component has specific responsibilities, i. e. the controller manages
low-level radio and baseband operations and the host manages high-level application
layer profiles. Typically, the host is implemented in the operating system and the con-
troller in the firmware of the Bluetooth chip. For example BlueZ and Bluedroid im-
plement the HCI host on Linux and Android, and the firmware of a Qualcomm or
Broadcom Bluetooth chip implements the HCI controller. The host and the controller
communicate using the Host Controller Interface (HCI) protocol. This protocol is based
on commands and events, i. e. the host sends (acknowledged) commands to the con-
troller, and the controller uses events to notify the host.

The Link Manager Protocol (LMP) is used over the air by two controllers to per-
form link set-up and control for Bluetooth BR/EDR. LMP is neither encrypted nor
authenticated. The LMP packets do not propagate to higher protocol layers, hence, the
hosts (OSes) are not aware about the LMP packets exchanged between the Bluetooth
controllers.

9.3 Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR

In this section we describe the Key Negotiation Of Bluetooth (KNOB) attack. The attack
allows Charlie (the attacker) to reduce the entropy of the encryption key of any Blue-
tooth BR/EDR (referred as Bluetooth) connection to 1 byte, without being detected by
the victims (Alice and Bob). The attacker can brute force the encryption key without
having to know any (pre-shared) secret material and without having to observe the Se-
cure Simple Pairing protocol. As a result, the attacker can eavesdrop and decrypt all
the traffic and inject arbitrary packets in the target Bluetooth network (piconet). The
attack works regardless the usage of Secure Connections (the strongest security mode

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 123

FIGURE 9.1: High level stages of a KNOB attack.

of Bluetooth). The KNOB attack high level stages are shown in Figure 9.1 and they are
described in detail in the rest of this section.

9.3.1 System and Attacker Model

We assume a system composed of two or more legitimate devices that communicate us-
ing Bluetooth (as described in Section 9.2). One device is the master and the others are
slaves. Without loss of generality, we focus on a piconet with one master and one slave
(Alice and Bob). We indicate their Bluetooth addresses with BTADDM and BTADDS ,
and the Bluetooth clock with CLK. The clock is used for synchronization and it does
not provide any security guarantee. The victims are capable of using Secure Simple
Pairing and Secure Connections. This combination enables the highest security level
of Bluetooth and should protect against eavesdropping and active man in the middle
attacks. For example, if both devices have a display their users have to confirm that
they see the same numeric sequence to mutually authenticate.

The attacker (Charlie) wants to decrypt all messages exchanged between Alice and
Bob and inject valid encrypted messages, without being detected. The attacker has no
access to any (pre-shared) secret material. i. e. the link key KL and the encryption key
KC . Charlie can observe the public nonces (EN_RAND and AU_RAND), the Bluetooth
clock and the packets exchanged between Alice and Bob.

We define two attacker models: a remote attacker and a firmware attacker. A remote
attacker controls a device that is in Bluetooth range with Alice and Bob. He is able
to passively capture encrypted messages, actively manipulate unencrypted communi-
cation, and to drop packets using techniques such as network man-in-the-middle and
manipulation of physical-layer signals [187, 143]. The firmware attacker is able to com-
promise the firmware of the Bluetooth chip of a single victim using techniques such as
backdoors [43], supply-chain implants [77], and rogue chip manufacturers [150]. The
firmware attacker requires no access to the Bluetooth host (OS) and applications used
by the victims.

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 124

FIGURE 9.2: Generation and usage of the Bluetooth link layer encryption
key (K ′

C). Firstly,KC is generated fromKL and other public parameters.
KC has 16 bytes of entropy, and it is not directly used as the encryption
key. K ′

C , the actual encryption key, is computed by reducing the entropy
of KC to N bytes. N is an integer between 1 and 16 and it is the result of
the encryption key negotiation protocol. The N byte entropy K ′

C is then
used for link layer encryption by either the E0 or the AES-CCM cipher.

9.3.2 Negotiate a Low Entropy Encryption Key

Every time a Bluetooth connection requires link-layer encryption, Alice and Bob com-
pute an encryption key KC based on KL, BTADDS , AU_RAND, and EN_RAND (see
top part of Figure 9.2). KL is the link key established during secure simple pairing
and the others parameters are public. Assuming ideal random number generation, the
entropy of KC is always 16 bytes.

KC is not directly used as the encryption key for the current session. The actual
encryption key, indicated with K ′C , is computed by reducing the entropy of KC to N
bytes. N is the outcome of the Bluetooth encryption key negotiation protocol (Entropy
Negotiation in Figure 9.2). The protocol is part of the Bluetooth specification since
version v1.0, and it was introduced to cope with international encryption regulations
and to facilitate security upgrades [162, p. 1650]. The specification of the Bluetooth
encryption key negotiation protocol contains three significant problems:

1. It allows to negotiate entropy values as low as 1 byte, regardless the Bluetooth
security level.

2. It is neither encrypted nor authenticated.

3. It is implemented in the Bluetooth controller (firmware) and it is transparent to
the Bluetooth host (OS) and to the user of a Bluetooth application.

Hence, an attacker (Charlie) can convince any two victims (Alice and Bob) to ne-
gotiate N equal to 1, the lowest possible, yet standard-compliant, entropy value. As a
result the victims compute and use a Bluetooth encryption key (K ′C) with one byte of
entropy. The victims (and their OSes) are not aware about the entropy reduction of K ′C
because the negotiation happens between the victims’ Bluetooth controller (firmware)
and the packets do not propagate to the victims’ Bluetooth host (OS).

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 125

Alice (controller)

A

Bob (controller)

B

LMP: AU RAND

LMP: SRES

LMP encryption mode req: 1

LMP accept

Negot’n

LMP K
′

C
entropy: 16

LMP K
′

C
entropy: 1

LMP accept

LMP start encryption: EN RAND

LMP accept

Encryption key K
′

C
has 1 byte of entropy

FIGURE 9.3: Alice and Bob negotiate 1 byte of entropy for the encryption
key (K ′

C). The protocol is run by Alice and Bob controllers (implemented
in their Bluetooth chip) over the air using LMP.

To understand how an attacker can set N equal to 1 (or to any other standard-
compliant value), we have to look at the details of the encryption key negotiation pro-
tocol. The protocol is run between the Bluetooth chip of Alice and Bob. In the follow-
ing, we provide an example where Alice (the master) proposes 16 bytes of entropy, and
Bob (the slave) is only able to support 1 byte of entropy (see Figure 9.3). The standard
enables to set the minimum and maximum entropy values by setting two parameters
defined as Lmin and Lmax. These values can be set and read only by the Bluetooth
chip (firmware). Indeed, our scenario describes a situation where Alice’s Bluetooth
firmware declares Lmax = 16 and Lmin = 1, and Bob’s Bluetooth firmware declares
Lmax = Lmin = 1.

The encryption key negotiation protocol is carried over the Link Manager Proto-
col (LMP). The first two messages in Figure 9.3 allow Alice to authenticate that Bob
possesses the correct KL. Then, with the next two messages, Alice requests to initiate
Bluetooth link layer encryption and Bob accepts. Now, the negotiation ofN takes place
(Negot’n in Figure 9.3). Alice proposes 16 bytes of entropy. Bob can either propose a
smaller value or accept the proposed one or abort the negotiation. In our example, Bob
proposes 1 byte of entropy because it is the only value that he supports and Alice ac-
cepts it. Then, Alice requests to activate link-layer encryption and Bob accepts. Finally,
Alice and Bob compute the same encryption key (K ′C) that has 1 byte of entropy. Note
that, the Bluetooth hosts of Alice and Bob do not have access to KC and K ′C , they are
only informed about the outcome of the negotiation. The key negotiation procedure

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 126

Alice (host)

Ahost

Alice (controller)

Actrl

Charlie (attacker)

C

Bob (controller)

Bctrl

Bob (host)

Bhost

HCI set encryption

HCI accept

LMP K
′

C
entropy: 16

LMP K
′

C
entropy: 1

LMP accept

LMP K
′

C
entropy: 1

LMP accept

HCI encryption on HCI encryption on

Alice and Bob use an encryption key K
′

C
with 1 byte of entropy

FIGURE 9.4: The KNOB attack sets the entropy of the encryption key
(K ′

C) to 1 byte. Alice requests Bob to activate encryption and starts the
encryption key negotiation protocol. The attacker (Charlie) changes the
entropy suggested by Alice from 16 to 1 byte. Bob accepts Alice’s pro-
posal and Charlie changes Bob’s acceptance to a proposal of 1 byte. Al-
ice, who originally proposed 16 bytes of entropy and she is asked to
use 1 byte accepts the (standard-compliant) proposal. Charlie drops Al-
ice’s acceptance message because Bob already accepted Alice’s proposal
(modified by Charlie). Charlie does not know any pre-shared secret and

does not observe SSP.

can also be initiated by the Bob (the slave), resulting in the same outcome.
Figure 9.4 describes how the attacker (Charlie) manages to let Alice and Bob agree

on aK ′C with 1 byte of entropy when both Alice and Bob declare Lmax = 16 and Lmin =
1. In this Figure we also show the local interactions between hosts and controllers to
emphasize that at the end of the negotiation the hosts are not informed about N and
K ′C .

The attack is performed as follows: Alice’s Bluetooth host requests to activate (set)
encryption. Alice’s Bluetooth controller accepts the local requests and starts the en-
cryption key negotiation procedure with Bob’s Bluetooth controller over the air. The
attacker intercepts Alice’s proposed key entropy and substitutes 16 with 1. This simple
substitution works because LMP is neither encrypted nor integrity protected. Bob’s
controller accepts 1 byte. The attacker intercepts Bob’s acceptance message and change
it to an entropy proposal of 1 byte. Alice thinks that Bob does not support 16 bytes
of entropy and accepts 1 byte. The attacker intercepts Alice’ acceptance message and
drops it. Finally, the controllers of Alice and Bob compute the same K ′C with one byte
of entropy and notify their respective hosts that link-layer encryption is on.

It is reasonable to think that the victim could prevent or detect this attack using a
proper value for Lmin. However, the standard does not state how to explicitly take
advantage of it, e. g. deprecate Lmin values that are too low. The standard states the
following: “The possibility of a failure in setting up a secure link is an unavoidable
consequence of letting the application decide whether to accept or reject a suggested

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 127

key size.” [162, p. 1663]. This statement is ambiguous because it is not clear what the
definition of “application” is in that sentence. As we show in Section 9.5, this am-
biguity results in no-one being responsible for terminating connections with low en-
tropy keys in practice. In particular, the entity who decides whether to accept or reject
the entropy proposal is the firmware of the Bluetooth chip by setting Lmin and Lmax
and participating in the entropy negotiation protocol. The “application” (intended as
the Bluetooth application running on the OS using the firmware as a service) cannot
check and set Lmin and Lmax, and it is not directly involved in the entropy accep-
tance/rejection choice (that is performed by the firmware). The application can interact
with the firmware using the HCI protocol. In particular, it can use the HCI Read En-
cryption Key Size request, to check the amount of negotiated entropy after the Bluetooth
connection is established and theoretically abort the connection. This check is neither
required nor recommended by the standard as part of the key negotiation protocol.

The low entropy negotiation presented in Figure 9.4 can be performed by both at-
tacker models presented in Section 9.3.1. The remote attacker has the capabilities of
dropping and injecting valid plaintext (the encryption key negotiation protocol is nei-
ther encrypted nor authenticated). The firmware attacker can modify few bytes in the
Bluetooth firmware of a victim to always negotiate 1 byte of entropy. Furthermore, the
negotiation is effective regardless of who initiates the protocol and the roles (master or
slave) of the victims in the piconet.

9.3.3 Brute forcing the Encryption Key

Bluetooth has two link layer encryption schemes one is based on the E0 cipher (legacy)
and the other on the AES-CCM cipher (Secure Connections). Our KNOB attack works
in both cases. If the negotiated entropy for the encryption key (K ′C) is 1 byte, then the
attacker can trivially brute force it trying (in parallel) the 256 K ′C ’s candidates against
one or more cipher texts. The attacker does not have to know what type of application
layer traffic is exchanged, because a valid plaintext contains well known Bluetooth
fields, such as L2CAP and RFCOMM headers, that the attacker can use as oracles.

We now describe how to compute all 1 byte entropy keys when E0 and AES-CCM
are in use. Each encryption mode involves a specific entropy reduction procedure
that takes N and KC as inputs and produces K ′C as output (Entropy Reduction in
Figure 9.2). The specification of Bluetooth calls this procedure Encryption Key Size
Reduction [162].

K ′C = g
(N)
2 ⊗

(
KC mod g

(N)
1

)
(Es)

In case ofE0,K ′C is computed using Equation (Es), whereN is an integer between 1
and 16 resulted from the encryption key negotiation protocol (see Section 9.3.2). g(N)

1 is
a polynomial of degree 8N used to reduce the entropy of KC to N bytes. The result of
the reduction is encoded with a block code g(N)

2 , a polynomial of degree less or equal to
128−8N . The values of these polynomials depend onN and they are tabulated in [162,
p. 1668]. If N = 1, then we can compute the 256 candidate K ′C by multiplying all the
possible 1 byte reductions KC mod g

(1)
1 (the set 0x00. . .0xff) with g(1)2 (that equals to

0x00e275a0abd218d4cf928b9bbf6cb08f).

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 128

In case of AES-CCM the entropy reduction procedure is simpler than the one of E0.
In particular, the 16−N least significant bytes ofKC are set to zero. For example, when
N = 1 the 256 K ′C candidates for AES-CCM are the set 0x00. . .0xff.

In the implementation of our KNOB attack brute force logic, we pre-compute the
512 keys with 1 byte of entropy and we store them in a look-up table to speed-up com-
parisons. Table 9.1 shows the first twenty K ′C with 1 byte of entropy for E0 and AES-
CCM. More details about the brute force implementation are discussed in Section 9.4.

E0 K
′
C in hex, MSB on the left AES-CCM K ′C in hex, MSB on the left

0x00000000000000000000000000000000 0x00000000000000000000000000000000
0x00e275a0abd218d4cf928b9bbf6cb08f 0x01000000000000000000000000000000
0x01c4eb4157a431a99f2517377ed9611e 0x02000000000000000000000000000000
0x01269ee1fc76297d50b79cacc1b5d191 0x03000000000000000000000000000000
0x0389d682af4863533e4a2e6efdb2c23c 0x04000000000000000000000000000000
0x036ba322049a7b87f1d8a5f542de72b3 0x05000000000000000000000000000000
0x024d3dc3f8ec52faa16f3959836ba322 0x06000000000000000000000000000000
0x02af4863533e4a2e6efdb2c23c0713ad 0x07000000000000000000000000000000
0x0713ad055e90c6a67c945cddfb658478 0x08000000000000000000000000000000
0x07f1d8a5f542de72b306d746440934f7 0x09000000000000000000000000000000
0x06d746440934f70fe3b14bea85bce566 0x0a000000000000000000000000000000
0x063533e4a2e6efdb2c23c0713ad055e9 0x0b000000000000000000000000000000
0x049a7b87f1d8a5f542de72b306d74644 0x0c000000000000000000000000000000
0x04780e275a0abd218d4cf928b9bbf6cb 0x0d000000000000000000000000000000
0x055e90c6a67c945cddfb6584780e275a 0x0e000000000000000000000000000000
0x05bce5660dae8c881269ee1fc76297d5 0x0f000000000000000000000000000000
0x0e275a0abd218d4cf928b9bbf6cb08f0 0x10000000000000000000000000000000
0x0ec52faa16f3959836ba322049a7b87f 0x11000000000000000000000000000000
0x0fe3b14bea85bce5660dae8c881269ee 0x12000000000000000000000000000000
0x0f01c4eb4157a431a99f2517377ed961 0x13000000000000000000000000000000

TABLE 9.1: List of twenty K ′
C used by E0 (left column) and AES-CCM

(right column) when N = 1 (key space is 256).

9.3.4 KNOB Attack Implications

The Key Negotiation Of Bluetooth (KNOB) attack exploits a vulnerability at the architectural
level of Bluetooth. The vulnerable encryption key negotiation protocol endangers potentially
all standard compliant Bluetooth devices, regardless their Bluetooth version number and im-
plementation details. We believe that the encryption key negotiation protocol has to be fixed as
soon as possible.

In particular the KNOB attack has serious implications related to its effectiveness,
stealthiness, and cost. The attack is effective because it exploits a weakness in the spec-
ification of Bluetooth. The Bluetooth security mode does not matter, i. e. the attack
works even with Secure Connections. The implementation details do not matter, e. g.
whether Bluetooth is implemented in hardware or in software. The time constraints
imposed by the Bluetooth protocols do not matter because the attacker can eavesdrop
the traffic and brute force the low-entropy key offline. The type of connection does not

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 129

matter, e. g. the attack works with long-lived and short-lived connections. In a long-
lived connection, e. g. victims are a laptop and a Bluetooth keyboard, the attacker has
to negotiate and brute force a single low-entropy K ′C . In a short-lived connection, e. g.
victims are two devices transferring files over Bluetooth, the attacker has to negotiate
and brute force multiple low-entropy K ′C over time re-using the same attack technique
without incurring in significant runtime and computational overheads.

The attack is stealthy because only the Bluetooth controllers (implemented in the
victims’ Bluetooth chip) are aware of N and K ′C . By design, the controllers are not
notifying the Bluetooth hosts (implemented in the OSes) about N , but only about the
outcome of the entropy negotiation. The users and the Bluetooth application develop-
ers are unaware of this problem because they use Bluetooth link-layer encryption as a
trusted service.

The attack is cheap because it does not require a strong attacker model and expen-
sive resources to be conducted. We expect that a remote attacker with commercial-
off-the-shelf devices such as a software defined radio, GNU Radio and a laptop can
conduct the attack.

9.3.5 KNOB Attack Root Causes

The root causes of the KNOB attack are shared between the specification and the imple-
mentation of Bluetooth BR/EDR confidentially mechanisms. On one side the specifica-
tion is defining a vulnerable encryption key negotiation protocol that allows devices to
negotiate low entropy values. On the implementation side (see Section 9.5), the Blue-
tooth applications that we tested are failing to check the negotiated entropy in practice.
This is understandable because they are implementing a specification that is not man-
dating or explicitly recommending an entropy check.

We do not see any reason to include the encryption key negotiation protocol in
the specification of Bluetooth. From our experiments (presented in Section 9.5) we
observe that if two devices are not attacked they always use it in the same way (a
device proposes 16 bytes of entropy and the other accepts). Furthermore, the entropy
reduction does not improve runtime performances because the size of the encryption
key is fixed to 16 bytes even when its entropy is reduced.

9.4 Implementation

We now discuss how we implemented the KNOB attack using a reference attack sce-
nario. In particular, we explain how we manipulate the key negotiation protocol, brute
force the encryption key (K ′C) using eavesdropped traffic, and validate K ′C by com-
puting it from KL as a legitimate device (as in Figure 9.2). In our attack scenario, the
attacker is able to decrypt the content of a link-layer encrypted file sent from a Nexus 5
to a Motorola G3 using the Bluetooth OBject EXchange (OBEX) profile. A Bluetooth
profile is the equivalent of an application layer protocol in the TCP/IP stack.

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 130

Bluetooth

Phone Android Version MAC SC Chip

Nexus 5 6.0.1 4.1 48:59:29:01:AD:6F No BCM4339
Motorola G3 6.0.1 4.1 24:DA:9B:66:9F:83 Yes Snapdragon 410

TABLE 9.2: Relevant technical specifications of Nexus 5 and Motorola G3
devices used to describe our attack implementation. The SC column in-

dicates if a device supports Secure Connections.

Our implementation required significant efforts mainly due to the lack of low-cost
Bluetooth protocol analyzers and software libraries implementing the custom Blue-
tooth security primitives (such as the modified SAFER+ block cipher). Using our im-
plementation we conducted successful KNOB attacks on more than 14 different Blue-
tooth chips, the attacks are evaluated in Section 9.5.

9.4.1 Attack Scenario

To describe our implementation we use an attack scenario with two victims a Nexus 5
and a Motorola G3, Table 9.2 lists their relevant specifications. The Nexus 5 is used also
as a man-in-the-middle attacker by adding extra code to its Bluetooth firmware. This
setup allows us to simulate a remote man-in-the-middle attacker (more details in Sec-
tion 9.4.2). To perform eavesdropping, we use an Ubertooth One [135] with firmware
version 2017-03-R2 (API:1.02). To the best of our knowledge, Ubertooth One does not
capture all Bluetooth BR/EDR packets, but it is the only open-source, low-cost, and
practical eavesdropping solution for Bluetooth that we know about. To brute force K ′C
and decrypt the ciphertext we use a ThinkPad X1 laptop running a Linux based OS.

The victims use the following security procedures: Secure Simple Pairing to gener-
ate KL (the link key) and authenticate the users, the entropy reduction function from
Equation (Es), and E0 legacy encryption. The victims use legacy encryption because
the Nexus 5 does not support Secure Connections. Nevertheless, the KNOB attack
works also with Secure Connections.

Every E0-encrypted packet that contains data is transmitted and received as in Fig-
ure 9.5. A cyclic redundancy checksum (CRC) is computed and appended to the pay-
load (PayTx). The resulting bytes (PTx) are encrypted withE0 usingK ′C . The ciphertext
is whitened, encoded, and transmitted over the air. On the receiver side the following
steps are applied in sequence: decoding, de-whitening, decryption, and CRC check.
The encryption and decryption procedures are the same because E0 is a stream cipher,
i. e. the same keystream is XORed with the plaintext and the ciphertext. Whitening
and encoding procedures do not add any security guarantee and the Ubertooth One is
capable of performing both procedures.

9.4.2 Manipulation of the Entropy Negotiation

We implement the manipulation of the encryption key negotiation protocol (presented
in Section 9.3.2) by extending the functionalities of InternalBlue [114] and using it to

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 131

FIGURE 9.5: Transmission and reception of an E0 encrypted payload.
The concatenation of the payload and its CRC (PTx) is encrypted,
whitened, encoded and then transmitted. On the receiver side the steps
are applied in the opposite order. RF is the radio frequency wireless

channel.

patch the Bluetooth chip firmware of the Nexus 5. Our InternalBlue modifications al-
low to manipulate all incoming LMP messages before they are processed by the entropy
negotiation logic, and all outgoing LMP messages after they’ve been processed by the
entropy negotiation logic. The entropy negotiation logic is the code in the Nexus 5
Bluetooth firmware that manages the encryption key negotiation protocol, and we do
not modify it. As a result, we can use a Nexus 5 (or any other device supported by
InternalBlue) as a victim and a remote KNOB attacker without having to deal with the
practical issues related with wireless attacks over-the-air.

InternalBlue is an open-source toolkit capable of interfacing with the firmware of
the BCM4339 Bluetooth chip in Nexus 5 phones. To use it, one has to root the target
Nexus 5 and compile and install the Android Bluetooth stack with debugging features
enabled. InternalBlue allows to patch the firmware in real-time (e. g. start LMP moni-
toring) and read the ROM and the RAM of firmware at runtime. InternalBlue provides
a way to hook and execute arbitrary code in the Bluetooth firmware. At the time of writ-
ing, InternalBlue is not capable of hooking directly the key negotiation logic. However,
we managed to extend it to enable two victims (one is always the Nexus 5) to negotiate
one (or more) byte of entropy.

Our manipulation of the entropy negotiation works regardless the role of the Nexus 5
in the piconet and it does not require to capture any information about the Secure Sim-
ple Pairing process. Assuming that the victims are already paired, we test if two victims
are vulnerable to the KNOB attack as follows:

1. We connect over USB the Nexus 5 with the X1 laptop, we run our version of
InternalBlue, and we activate LMP and HCI monitoring.

2. We connect and start the Ubertooth One capture over the air focusing only on the
Nexus 5 piconet (using UAP and LAP flags).

3. We request a connection from the Nexus 5 to the victim (or vice versa) to trigger
the encryption key negotiation protocol over LMP.

4. Our InternalBlue patch changes the LMP packets as Charlie does in Figure 9.4.

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 132

5. If the victims successfully complete the protocol, then they are vulnerable to
the KNOB attack and we can decrypt the ciphertext captured with the Uber-
tooth One.

We now describe how we extended InternalBlue to perform the fourth step of the
list. In this context, the most important file of InternalBlue is internalblue/fw_5.py.
This file contains all the information about the BCM4339 firmware, and it provides
two hooks into the firmware, defined by Mantz (the main author of InternalBlue) as
LMP_send_packet and LMP_dispatcher. The former hook allows to execute code
every time an LMP packet is about to be sent and the latter whenever an LMP packet
is received. The hooks are intended for LMP monitoring, and we upgraded them to be
used also for LMP manipulation.

Listing 4 shows three ARM assembly code blocks that we added to fw_5.py to let
the Nexus 5 and the Motorola G3 negotiate 1 byte of entropy. In this case the Nexus 5
is the master and it initiates the encryption key negotiation protocol. The first block
translates to: if the Nexus 5 is sending an LMP K ′C entropy proposal then change it to
1 byte. This block is executed when the Nexus 5 starts an encryption key negotiation
protocol. The code allows to propose any entropy value by moving a different constant
into r2 in line 5.

The second block from Listing 4 translates to: if the Nexus 5 is receiving an LMP
accept (entropy proposal), then change it to an LMP K ′C entropy proposal of 1 byte.
This code is used to let the Nexus 5 firmware believe that the other victim proposed
1 byte, while she already accepted 1 byte (assuming that she is vulnerable). The third
blocks translates to: if the Nexus 5 is sending an LMP accept (entropy proposal), then
change it to an LMP preferred rate. This allows to obtain the same result of dropping
an LMP accept packet because the LMP preferred rate packet does not affect the state
of the encryption key negotiation protocols. We developed and used similar patches to
cover the other attack cases: Nexus 5 is the master and does not initiate the connection,
Nexus 5 is the slave and initiates the connection and Nexus 5 is the slave and does not
initiate the connection.

9.4.3 Brute Forcing the Encryption Key

Once the attacker is able to reduce the entropy of the encryption key (K ′C) to 1 byte, he
has to brute force the key value (key space is 256). In this section we explain how we
brute forced and validated a E0 encryption key with 1 byte of entropy. The key was
used in one of our KNOB attacks to decrypt the content of a file transferred over a link
layer encrypted Bluetooth connection.

The details about theE0 encryption scheme are presented in Figure 9.6, we describe
them backwards starting from the E0 cipher. E0 takes three inputs: BTADDM , CLK26-
1 and K ′C . CLK26-1 are the 26 bits of CLK in the interval CLK[25:1] (assuming that
CLK stores its least significant bit at CLK[0]). The BTADDM is the Bluetooth address
of the master and it is a public parameter. We did not have to implement the E0 cipher
because we found an open-source implementation [48] which we verified against the
specification of Bluetooth. To provide valid K ′C candidates to E0 we had to implement
the Es entropy reduction procedure. This procedure takes an input with 16 bytes of
entropy (KC) and computes an output with N bytes of entropy (K ′C). Es involves

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 133

Listing 4 We add three ARM assembly code blocks to internalblue/fw_5.py to
negotiate K ′C with 1 byte of entropy. In this case the Nexus 5 is the master and it
initiates the encryption key negotiation protocol.
1 # Send LMP Kc' entropy 1 rather than 16
2 ldrb r2, [r1]
3 cmp r2, #0x20
4 bne skip_sent_ksr
5 mov r2, #0x01
6 strb r2, [r1, #1]
7 skip_sent_ksr:
8

9 # Recv LMP Kc' entropy 1 rather than LMP accept
10 ldrb r2, [r1]
11 cmp r2, #0x06
12 bne skip_recv_aksr
13 ldrb r2, [r1, #1]
14 cmp r2, #0x10
15 bne skip_recv_aksr
16 mov r2, #0x20
17 strb r2, [r1]
18 mov r2, #0x01
19 strb r2, [r1, #1]
20 skip_recv_aksr:
21

22 # Send LMP_preferred rate rather than LMP accept
23 # Simulate an attacker dropping LMP accept
24 ldrb r2, [r1]
25 cmp r2, #0x06
26 bne skip_send_aksr
27 ldrb r2, [r1, #1]
28 cmp r2, #0x10
29 bne skip_send_aksr
30 mov r2, #0x48
31 strb r2, [r1]
32 mov r2, #0x70
33 strb r2, [r1, #1]
34 skip_send_aksr:

modular arithmetic over polynomials in Galois fields and we use the BitVector [95]
Python module to perform such computations.

Our Python brute force script takes a ciphertext (captured over the air using Uber-
tooth One) and tries to decrypt it by using the E0 cipher with all possible values of
K ′C . We validate our script by decrypting the content of a file sent from the Nexus 5
to the Motorola G3 using the OBEX Bluetooth profile after the negotiation of 1 byte of
entropy. The content of the file (in ASCII) is aaaabbbbccccdddd. We discuss several
brute forcing practical issues in Section 9.6.3.

Once we found the matching plaintext we wanted to verify that the brute forced
key was effectively the one in use by the victims. To do that we had to implement E1

and E3, the former is used to compute the Ciphering Offset Number (COF), the latter
to compute KC (see Figure 9.6). Both procedures use a custom hash function defined
in the specification of Bluetooth with .̋ We write E1 and E3 equations and label them

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 134

FIGURE 9.6: Implementation of the KNOB attack on the E0 cipher. The
attacker makes the victims agree on a K ′

C with one byte of entropy (N =
1) and then brute force K ′

C , without knowing KL and KC .

with their respective names as follows:

SRES‖ACO = H(KL,AU_RAND,BTADDS, 6) (E1)
KC = H(KL,EN_RAND,COF, 12) (E3)

Figure 9.7 shows howE3 uses the ˝ hash function, ˝ internally uses SAFER+, a block
cipher that was submitted as an AES candidate in 1998 [117]. SAFER+ is used with 128
bit block size (8 rounds), in ECB mode, and only for encryption. SAFER+’ (SAFER+
prime) is a modified version of SAFER+ such that the input of the first round is added
to the input of the third round. This modification was introduced in the specification
of Bluetooth to avoid SAFER+’ being used for encryption [162, p. 1677].

We implemented in Python both SAFER+ and SAFER+’ including the round com-
putations and the key scheduling algorithm. We tested the two against the specification
of Bluetooth (where they are indicated with Ar and Ar’ [162, p. 1676]). We also imple-
mented the E and O blocks from Figure 9.7. The E block is an extension block that
transforms the 12 byte COF into a 16 byte sequence using modular arithmetic. The
same block is applied to the 6 byte BTADDS in E1. The O block is offsetting KL us-
ing algebraic (modular) operations and the largest primes below 257 for which 10 is
a primitive root. We implement the E and O blocks in Python and we tested them
against the specification of Bluetooth. Then, we were able to implement ˝ and to use it
to implement and test E3 and E1.

We validate the brute forced K ′C by using the necessary parameters from Figure 9.6
to compute K ′C from KL. We captured the parameters using the Bluetooth logging ca-
pabilities offered by Android. Table 9.3 shows an example of actual public and private
values used during one of our KNOB attacks. We plan to release our code implement-
ing Es, E1 and E3 as open-source to help researchers interested in Bluetooth’s security,
after we complete the responsible disclosure of our findings1.

1See https://github.com/francozappa/knob

https://github.com/francozappa/knob

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 135

FIGURE 9.7: Bluetooth defines H a custom hash function based on
SAFER+. H is used to compute KC from KL, EN_RAND, and COF (see

Equation E3).

9.4.4 Implementation for Secure Connections

The specification of Bluetooth allows to perform the KNOB attack even when the vic-
tims are using Secure Connections. We already implemented the entropy reduction
function of the brute force script over AES–CCM. However, at the time of writing, In-
ternalBlue is not capable of patching the firmware of a Bluetooth chip that supports
Secure Connections, indeed we are not able to implement the low entropy negotiation
part of the attack using InternalBlue.

9.5 Evaluation

Our implementation of the KNOB attack (presented in Section 9.4) allows to test if any
device accepts an encryption key with 1 byte of entropy (N = Lmin = 1). We focus our
discussion on the attack best case (1 byte of entropy) while arguably any entropy value
lower than 14 bytes could be considered not secure for symmetric encryption [19].

After successfully conducting the KNOB attack on a Nexus 5 and a Motorola G3
we conducted other KNOB attacks on more than 14 unique Bluetooth chips (by attack-
ing 21 different devices). Each attack is easy to reproduce and testing if a device is
vulnerable is a matter of seconds.

Based on our experiments, we concluded that there are no differences between the
specification and the implementation of both the Bluetooth controller (implemented
in the firmware) and the Bluetooth host (implemented in the OS and usable as an in-
terface by a Bluetooth application). In the former case the specification is not enforc-
ing any minimum Lmin and it is not protecting the entropy negotiation protocol. The
firmware’s implementers (to provide standard-compliant products) are allowing the
negotiation of 1 byte of entropy with an insecure protocol. The only exception is the
Apple W1 chip where an attacker can only reduce the entropy to 7 bytes. In the lat-
ter case, the Bluetooth specification is providing an HCI Read Encryption size API but
it is not mandating or recommending its usage, e. g. a mandatory check at the end of
the LMP entropy negotiation. The host’s implementers are providing this API and the
applications that we tested are not using it.

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 136

Name Value

Public
BTADDM 0xccfa0070dcb6
BTADDS 0x829f669bda24
AU_RAND 0x722e6ecd32ed43b7f3cdbdc2100ff6e0
EN_RAND 0xd72fb4217dcdc3145056ba488bea9076
SRES 0xb0a3f41f
N 0x1

Secret
KL 0xd5f20744c05d08601d28fa1dd79cdc27
COF=ACO 0x1ce4f9426dc2bc110472d68e
KC 0xa3fccef22ad2232c7acb01e9b9ed6727
K ′C 0x7fffffffffffffffffffffffffffffff

TABLE 9.3: Public and secret values (in hexadecimal representation) col-
lected during a KNOB attack involving authenticated SSP and E0 en-

cryption. The encryption key (K ′
C) has 1 byte of entropy.

9.5.1 Evaluation Setup

To perform our evaluation we collected as many devices as possible containing differ-
ent Bluetooth chips. At the time of writing, we were able to test chips from Broadcom,
Qualcomm, Apple, Intel, and Chicony manufacturers. For each chip we conducted the
KNOB attack following the same five steps presented in Section 9.4.2. As explained ear-
lier, the Nexus 5 is used as a (remote) attacker and a victim. For each test we recorded
the manipulated encryption key negotiation protocol over LMP in a pcapng file and
we manually verified the protocol’s outcome with Wireshark.

Our evaluation setup is not hard to reproduce and easy to extend because it does
not require expensive hardware and uses open-source software. We would like to see
other researchers evaluating more Bluetooth chips and devices that currently we do
not posses, e. g. Apple Watches.

9.5.2 Evaluation Results

Table 9.4 shows our evaluation results. Overall, we tested more than 14 Bluetooth chips
and 21 devices. The first column contains the Bluetooth chip names. We fill the entries
of this column with Unknown when we are not able to find information about the
chip manufacturer and/or model number. The second column lists the devices that
we tested grouped by chip, e. g. the Snapdragon 835 is used both by the Pixel 2 and
the OnePlus 5. The third column contains a X if the Bluetooth chip accepts 1 byte of
entropy and a * if it accepts at least 7 bytes. The table’s rows are grouped by Bluetooth
version in four blocks: version 5.0, version 4.2, version 4,1 and version lower or equal
than 4.0.

From the third column of Table 9.4 we see that all the chips accept 1 byte of entropy
(X) except the Apple W1 chip (*) that requires at least 7 bytes of entropy. Apple W1 and
its successors are used in devices such as AirPods, and Apple Watches. Seven bytes of

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 137

Bluetooth chip Device(s) Vulnerable?

Bluetooth Version 5.0
Snapdragon 845 Galaxy S9 X
Snapdragon 835 Pixel 2, OnePlus 5 X
Apple/USI 339S00428 MacBookPro 2018 X
Apple A1865 iPhone X X

Bluetooth Version 4.2
Intel 8265 ThinkPad X1 6th X
Intel 7265 ThinkPad X1 3rd X
Unknown Sennheiser PXC 550 X
Apple/USI 339S00045 iPad Pro 2 X
BCM43438 RPi 3B, RPi 3B+ X
BCM43602 iMac MMQA2LL/A X

Bluetooth Version 4.1
BCM4339 (CYW4339) Nexus 5, iPhone 6 X
Snapdragon 410 Motorola G3 X

Bluetooth Version ≤ 4.0
Snapdragon 800 LG G2 X
Intel Centrino 6205 ThinkPad X230 X
Chicony Unknown ThinkPad KT-1255 X
Broadcom Unknown ThinkPad 41U5008 X
Broadcom Unknown Anker A7721 X
Apple W1 AirPods *

TABLE 9.4: List of Bluetooth chips and devices tested against the KNOB
attack. Xindicates that a chip accepts one byte of entropy. * indicates
that a chip accepts at least seven bytes of entropy. We note that, all chips
and devices implementing any specification of Bluetooth are expected to
be vulnerable to the KNOB attack because the entropy reduction feature

is standard-compliant.

entropy are better than one, but not enough to prevent brute force attacks. For example,
the Data Encryption Standard (DES) uses the same amount of entropy and DES keys
were brute forced multiple times with increasing efficacy [103].

Table 9.4 also demonstrates that the vulnerability spans across different Bluetooth
versions including the latest ones such as 5.0 and 4.2. This fact confirms that the KNOB
attack is a significant threat for all Bluetooth users and we believe that the specification
of Bluetooth has to be fixed as soon as possible.

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 138

9.6 Discussion

9.6.1 Attacking Other Bluetooth Profiles

Cable replacement wireless technologies such as Bluetooth are widely used for all sorts
of applications including desktop, mobile, IoT, industrial and medical devices. Blue-
tooth defines its set of application layer services as profiles. In Section 9.4 we describe
an attack on the OBject EXchange (OBEX) Bluetooth profile, where the attacker breaks
Bluetooth security by decrypting the content of an encrypted file without having ac-
cess to any (pre-shared) secret. Here we describe three KNOB attacks targeting other
popular Bluetooth profiles. As in the OBEX case, the attacks have serious implica-
tions in terms of security and privacy of the victims. To the best of our knowledge,
all the profiles that we discuss in this section rely only on the link-layer for their secu-
rity guarantees and they are widely used across different vendors. Our list of attacks is
not exhaustive and an attacker might exploit the vulnerable encryption key negotiation
protocol of Bluetooth in other creative ways.

HID profile The attacker could perform a remote keylogging attack on any device
that uses the Human Interface Device (HID) profile. This profile is used by input-
output devices such as keyboards, mice and joysticks. As a result, the attacker can sniff
sensitive information including passwords, credit card numbers, and emails regardless
if these information are then encrypted on the (wired or wireless) Ethernet link.

Bluetooth tethering The attacker could mount a remote man-in-the-middle attack
when the victim uses Bluetooth for tethering. Tethering is used by a device, acting as
an hotspot, to share Internet connectivity with other devices in range. Bluetooth trans-
ports Ethernet over the Bluetooth Network Encapsulation Protocol (BNEP) [26]. This
protocol encapsulates Ethernet frames and transports them over (link-layer encrypted)
L2CAP. As a result, the attacker can sniff all Internet traffic of the victims using a Blue-
tooth hotspot.

A2DP profile The attacker could record and inject audio signals when the victim uses
the Advanced Audio Distribution Profile (A2DP) profile. As a result, the attacker is able
to record phone and Voice over IP (VoIP) calls even if the call is encrypted (e. g. 4G and
Skype). The attacker can also tamper with voice commands sent to a personal assistant,
e. g. Siri and Google Assistant. Recent mobile devices, such as smartphone and tablets,
are particularly vulnerable to this threat because Bluetooth is a convenient solution to
the lack of an analog audio connector (audio jack).

9.6.2 Attacking Multiple Nodes and Piconets

In our word we describe the implementation of KNOB attacks targeting two victims.
If a Bluetooth piconet contains more than two devices, then (in the worst case for the
attacker) each master-slave pair uses a dedicated set of keys. In this scenario the KNOB
attack still works because it can be parallelized with minimal effort. For example, the
attacker may run the same attack script on different computing units, such as processes
or machines, and let each computing unit target a master-slave pair. Each parallel

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 139

instance of the attack negotiates an encryption key with one byte of entropy, captures
the exchanged ciphertext, and brute forces the encryption key. For example, an attacker
is able to decrypt all the traffic from a victim using multiple Bluetooth I/O devices
to interact with his device e. g. a laptop connected with a keyboard, a mouse and an
headset.

The KNOB attack is effective even if the attacker wants to target multiple piconets
(Bluetooth networks) at the same time. In this case the attacker has to follow and use
a different Bluetooth clock (CLK) value for each piconet to compute the correct en-
cryption key. This is not a problem because the attacker can use parallel KNOB attack
instances, where each instance follows a pair of devices in a target piconet.

9.6.3 Practical Implementation Issues

We spent considerable time to fine tune our brute force script. One main reason is that
Ubertooth One, used to sniff Bluetooth BR/EDR packets over the air, does not reliably
capture all packets and clock values (CLK). This is true even if we limit our capture
to a specific piconet by setting the UAP and LAP parameters. As a result, we had to
include extra logic in our brute force script to iterate over different CLK values and
E0 keystream offsets. Our basic brute force logic only iterates over the encryption key
space (256 iterations). The extra logic can be removed if we get access to a commercial-
grade Bluetooth protocol analyzer such as Ellisys [57] or similar. Unfortunately, these
devices are very expensive.

We implemented our attack by simulating a remote attacker using InternalBlue.
Alternatively, we could have conducted the attacks over the air using signal manipu-
lation [143] and (reactive) jamming [187]. However, the InternalBlue setup is simpler,
more reliable, cheaper, and easier to reproduce than the over-the-air setup and it affects
the victims in the same way as a remote attacker.

9.6.4 Countermeasures

In this section we propose several countermeasures to the KNOB attack. We divide
them into two classes: legacy compliant and non legacy compliant. The former type
of countermeasure does not require a change to the specification of Bluetooth while
the latter does. We already proposed these countermeasures to the Bluetooth SIG and
CERT during our responsible disclosure.

Legacy compliant. Our first proposed legacy compliant countermeasure is to require
a minimum and maximum amount of negotiable entropy that cannot be easily brute
forced, e. g. require 16 bytes of entropy. This means fixing Lmin and Lmax in the Blue-
tooth controller (firmware) and results in the negotiation of proper encryption keys.
Another possible countermeasure is to automatically have the Bluetooth host (OS)
check the amount of negotiated entropy each time link layer encryption is activated
and abort the connection if the entropy does not meet a minimum requirement. The
entropy value can be obtained by the host using the HCI Read Encryption Key Size
Command. This solution requires to modify the Bluetooth host and it might be subop-
timal because it acts on a connection that is already established (and possibly in use),
not as part of the entropy negotiation protocol. A third solution is to distrust the link

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 140

layer and provide the security guarantees at the application layer. Some vendors have
done so by adding a custom application layer security mechanism on top of Bluetooth
(which, in case of Google Nearby Connections, was also found to be vulnerable [11]).

Non legacy compliant. A non legacy compliant countermeasure is to modify the en-
cryption key negotiation protocol by securing it using the link key. The link key is
a shared (and possibly authenticated) secret that should be always available before
starting the entropy negotiation protocol. The new protocol should provide message
integrity and might also provide confidentiality. Preferably, the specification should
get rid of the entropy negotiation protocol and always use encryption keys with a fixed
amount of entropy, e. g. 16 bytes. The implementation of these solutions only requires
the modification of the Bluetooth controller (firmware).

9.7 Related Work

The security and privacy guarantees of Bluetooth were studied since Bluetooth v1.0 [94,
190]. Particular attention was given to Secure Simple Pairing (SSP), a mechanisms that
Bluetooth uses to generate and share a long term secret (defined as the link key). Sev-
eral attacks on the SSP protocol were proposed [160, 81, 24]. The Key Negotiation
Of Bluetooth (KNOB) attack works regardless of security guarantees provided by SSP
(such as mutual user authentication).

The most up to date survey about Bluetooth security was provided by NIST in
2017 [137]. This survey recommends to use 128 bit keys (16 bytes of entropy). It also
describes the key negotiation protocol, and considers it as a security issue when one
of the connected devices is malicious (and not a third party). Prior surveys do not
consider the problem of encryption key negotiation at all [53] or superficially discuss
it [176].

The various implementation of Bluetooth were also analyzed and several attacks
were presented on Android, iOS, Windows and Linux implementations [15]. Our at-
tack works regardless of the implementation details of the target platform, because if
any implementation is standard-compliant then it is vulnerable to the KNOB attack.

The security of the ciphers used by Bluetooth has been extensively discussed by
cryptographers. The SAFER+ cipher used by Bluetooth for authentication purposes
was analyzed [100]. The E0 cipher used by Bluetooth for encryption was also ana-
lyzed [61]. Our attack works even with perfectly secure ciphers. For our implementa-
tion of the custom Bluetooth security procedures (presented in Section 9.4) we used as
main references the specification of Bluetooth [162] and third-party hardware [101] and
software [113] implementations.

Third-party manipulations of key negotiation protocols were also discussed in the
context of WiFi, for example key reuse in [178]. Compared to those attacks, our attack
exploits not only implementation issues, but a standard-compliant vulnerability of the
specification of Bluetooth.

Protocol downgrade attacks were discussed in the context of TLS[123], where the
two parties are negotiating the cipher suite to use. We note that in contrast to our
scenario, for TLS the application developers have commonly direct control over the
cipher suites that will be offered by their applications. Therefore, avoiding a fallback

Chapter 9. The KNOB is broken: Exploiting Low Entropy of Bluetooth BR/EDR 141

to legacy encryption standards can be prevented by the developers. To the best of our
knowledge, this is not the case for Bluetooth, as the protocols does not enforce any
mandatory checks on the encryption key’s entropy.

9.8 Conclusion

In this chapter we present the Key Negotiation Of Bluetooth (KNOB) attack. Our at-
tack is capable of reducing the entropy of the encryption key of any Bluetooth BR/EDR
connection to 1 byte (8 bits). The attack is standard-compliant because the specification
of Bluetooth includes an insecure encryption key negotiation protocol that supports
entropy values between 1 and 16 bytes. As a main consequence, an attacker can easily
negotiate an encryption key with low entropy and then brute force it. The attacker is
effectively breaking the security guarantees of Bluetooth without having to posses any
(pre-shared) secret material. The attack is stealthy because the vulnerable entropy ne-
gotiation protocol is run by the victims’ Bluetooth controller and this protocol is trans-
parent to the Bluetooth host (OS) and the Bluetooth application used by the victims. We
expect that the attack could be run in parallel to target multiple devices and piconets at
the same time.

We demonstrate that the KNOB attack can be performed in practice by implement-
ing it to attack a Nexus 5 and a Motorola G3. In our attack we decrypt a file transmitted
over an authenticated and link-layer encrypted Bluetooth connection. Brute-forcing a
key with 1 byte of entropy introduces a negligible overhead enabling an attacker to
decrypt all the ciphertext and to introduce valid ciphertext even in real-time.

We evaluate the KNOB attack on more than 14 Bluetooth chips from different ven-
dors such as Broadcom, Qualcomm and Intel. All the chips accept 1 byte of entropy
except the Apple W1 chip that accepts (at least) 7 bytes of entropy. Frankly, we were
expecting to find more non standard-compliant chips like the Apple W1. Before sub-
mitting our work, we reported our findings to the Computer Emergency Response
Team (CERT) and the Bluetooth Special Interest Group (SIG). Both organizations ac-
knowledged the problem and we are collaborating with them to solve it. After our
responsible disclosure, we plan to release the tools that we developed to implement
the attacks as open-source.

The KNOB attack is a serious threat to the security and privacy of all Bluetooth
users. We were surprised to discover such fundamental issues in a widely used and 20
years old standard. We attribute the identified issues in part to ambiguous phrasing in
the standard, as it is not clear who is responsible for enforcing the entropy of the en-
cryption keys, and as a result no-one seems to be responsible in practice. We urge the
Bluetooth SIG to update the specification of Bluetooth according to our findings. Until
the specification is not fixed, we do not recommend to trust any link-layer encrypted
Bluetooth BR/EDR link. In Section 9.6.4 we propose legacy and non legacy compliant
countermeasures that would make the KNOB attack impractical. We also recommend
the Bluetooth SIG to create a dedicated procedure enabling researchers to securely sub-
mit new potential vulnerabilities, similarly to what other companies, such as Google,
Microsoft and Facebook, are offering.

142

Chapter 10

Conclusion about Wireless Systems
Security

Wireless technologies, such as Wi-Fi and Bluetooth, are pervasive in our society and
they are used to exchange sensitive information and to monitor and control remote
systems. In the second part of the thesis we focused on securing these technologies.
We defined three problems that we wanted to tackle: evaluation and usability of de-
ployed physical layer features as security defenses, improvement of the accessibility of
complex (and proprietary) wireless technologies, and verification (and improvement)
of the security posture of widely adopted wireless systems.

We revised recent amendments of the IEEE 802.11 (WLAN) standard [9] because
802.11 includes several advanced physical layer features such as MIMO, spatial diver-
sity and spatial multiplexing that might be used as defense mechanisms. We concluded
that indeed these features are capable of providing some benefits, e. g. beamforming re-
duces the SNR of a passive eavesdropper that is far from the main lobe of transmission.

Nearby Connections is an API to include proximity based services into Android
and Android Things application. A single vulnerability in this API can be exploited
on millions of devices. Despite the wide attack surface of Nearby Connections, be-
fore our work there were no information about its security mechanisms. In [11]1 we
present the first security analysis of Nearby Connections. This technologies presents
several significant problems such as the lack of mandatory authentication both at the
link layer and the application layer. The takeaway message is that “encryption can be
meaningless without authentication” and the attacks that we demonstrated are a direct
consequence of that.

Bluetooth is a pervasive wireless technology used in many scenario such as mobile,
IoT, car, medical, and industrial. The Bluetooth specifications is extremely complex,
there is no reference implementation available and no detailed security analysis of its
components. In [12]2 we describe an high impact vulnerability at the architectural level
of Bluetooth that we found while revising the Bluetooth standard. Our finding allows
an attacker to reduce the entropy of the encryption key of any Bluetooth BR/EDR con-
nection as low as 1 Byte. The attacker does not have observe the Bluetooth secure
simple pairing. We call our attack the KNOB (Key Negotiation Of Bluetooth) attack,
and we demonstrate that “the KNOB is broken” by exploiting a broad set of Bluetooth

1https://francozappa.github.io/project/rearby/
2https://francozappa.github.io/project/knob/

https://francozappa.github.io/project/rearby/
https://francozappa.github.io/project/knob/

Chapter 10. Conclusion about Wireless Systems Security 143

chips from Intel, Broadcom, Qualcomm, and Apple. We collaborated with the industry
to fix the Bluetooth specification3.

10.1 Lessons Learnt

During this PhD I’ve learnt many valuable lessons. Here I’m sharing some of them
regarding wireless system security:

• Security through obscurity is still a problem for wireless systems, especially in
the case of SoC and related firmwares.

• Controlled experiments and attacks over the air are difficult to execute.

• Architectural attacks on any protocol have devastating consequences.

10.2 Future Work

These are the main research directions that we would like to see in the future:

• Development of security-oriented physical layer features.

• Case studies about already deployed physical layer features that can used for
defensive purposes.

• Security evaluations of popular (proprietary) technologies that are managing sen-
sitive data.

• Development of low cost software and hardware tools to ease (security) evalua-
tions of wireless technologies.

3See Chapter 5 for our conclusion about cyber-physical systems security.

144

Bibliography

[1] Sridhar Adepu and Aditya Mathur. “An investigation into the response of a wa-
ter treatment system to cyber attacks”. In: Proc. of Symposium on High Assurance
Systems Engineering (HASE). IEEE. 2016.

[2] Sridhar Adepu and Aditya Mathur. “Detecting multi-point attacks in a water
treatment system using intermittent control actions”. In: Proc. of the Singapore
Cyber-Security Conference (SG-CRC). 2016.

[3] Sridhar Adepu and Aditya Mathur. “Distributed Detection of Single-Stage Mul-
tipoint Cyber Attacks in a Water Treatment Plant”. In: Proc. of the Asia Conference
on Computer and Communications Security (ASIACCS). 2016.

[4] Narendra Anand, Sung-Ju Lee, and Edward W Knightly. “Strobe: Actively se-
curing wireless communications using zero-forcing beamforming”. In: INFO-
COM, 2012 Proceedings IEEE. IEEE. 2012.

[5] Android Developers. Overview of Google Play Services. https://developers.
google.com/android/guides/overview, Accessed: 2018-01-26.

[6] Daniele Antonioli. MiniCPS public repository. https://github.com/scy-
phy/minicps.

[7] Daniele Antonioli, Anand Agrawal, and Nils Ole Tippenhauer. “Towards high-
interaction virtual ICS honeypots-in-a-box”. In: Proceedings of the ACM Workshop
on Cyber-Physical Systems Security and Privacy (co-located with CCS). https://
dl.acm.org/citation.cfm?id=2994493 Research excellence award by
ST Electronics FIRST workshop 2017. ACM. 2016, pp. 13–22.

[8] Daniele Antonioli, Giuseppe Bernieri, and Nils Ole Tippenhauer. “Taking con-
trol: Design and implementation of botnets for cyber-physical attacks with cps-
bot”. In: arXiv preprint arXiv:1802.00152 (2018).

[9] Daniele Antonioli, Sandra Siby, and Nils Ole Tippenhauer. “Practical Evalua-
tion of Passive COTS Eavesdropping in 802.11b/n/ac WLAN”. In: Proceedings
of the Cryptology And Network Security (CANS) conference. 2017.

[10] Daniele Antonioli and Nils Ole Tippenhauer. “MiniCPS: A toolkit for security
research on CPS networks”. In: Proceedings of the ACM Workshop on Cyber-Physical
Systems-Security and/or Privacy (co-located with CCS). https://dl.acm.org/
citation.cfm?id=2808715, Repo: https://github.com/scy-phy/
minicps. ACM. 2015, pp. 91–100.

[11] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. “Nearby Threats:
Reversing, Analyzing, and Attacking Google’s ’Nearby Connections’ on An-
droid”. In: Proceedings of the Network and Distributed System Security Symposium
(NDSS). 2019.

https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview
https://github.com/scy-phy/minicps
https://github.com/scy-phy/minicps
https://dl.acm.org/citation.cfm?id=2994493
https://dl.acm.org/citation.cfm?id=2994493
https://dl.acm.org/citation.cfm?id=2808715
https://dl.acm.org/citation.cfm?id=2808715
https://github.com/scy-phy/minicps
https://github.com/scy-phy/minicps

Bibliography 145

[12] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. “The KNOB
is Broken: Exploiting Low Entropy in the Encryption Key Negotiation of Blue-
tooth BR/EDR.” In: Proceedings of the USENIX Security Symposium. 2019.

[13] Daniele Antonioli et al. “Gamifying ICS Security Training and Research: De-
sign, Implementation, and Results of S3”. In: Proceedings of the ACM Workshop
on Cyber-Physical Systems Security and Privacy (co-located with CCS). https://
dl.acm.org/citation.cfm?id=3140253. 2017.

[14] William A Arbaugh et al. Real 802.11 security: Wi-Fi protected access and 802.11 i.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[15] Armis Inc. The Attack Vector BlueBorne Exposes Almost Every Connected Device.
https://armis.com/blueborne/, Accessed: 2018-01-26.

[16] Michael Backes, Sven Bugiel, and Erik Derr. “Reliable third-party library detec-
tion in android and its security applications”. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM. 2016, pp. 356–
367.

[17] Xiaolong Bai et al. “Staying secure and unprepared: Understanding and miti-
gating the security risks of apple zeroconf”. In: 2016 IEEE Symposium on Security
and Privacy (SP). IEEE. 2016, pp. 655–674.

[18] Elaine Barker, L Chen, and et al Roginsky A. Recommendation for Pair-Wise Key-
Establishment Schemes Using Discrete Logarithm Cryptography. https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.
pdf. Recommendations of the NIST. 2018.

[19] Elaine Barker et al. “Recommendation for key management part 1: General (re-
vision 3)”. In: NIST special publication 800.57 (2012), pp. 1–147.

[20] David C. Bergman and David M. Nicol. “Test Bed for Evaluation of Power Grid
Cyber-Infrastructure”. In: Real-Time Simulation Technologies Principles, Methodolo-
gies, and Applications. Ed. by PJ Mosterman K Popovici. CRC Press, 2012.

[21] Massimo Bernaschi, Francesco Ferreri, and Leonardo Valcamonici. “Access points
vulnerabilities to DoS attacks in 802.11 networks”. In: Wireless Networks (2008).

[22] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-
curve cryptography. https://safecurves.cr.yp.to, Accessed: 2018-07-16.

[23] Thirumalesh Bhat and Nachiappan Nagappan. “Evaluating the efficacy of test-
driven development: industrial case studies”. In: Proc. of symposium on Empirical
Software Engineering (ISESE). 2006, pp. 1–8. ISBN: 1595932186. URL: http://
dl.acm.org/citation.cfm?id=1159787.

[24] Eli Biham and Lior Neumann. Breaking the Bluetooth Pairing–Fixed Coordinate In-
valid Curve Attack. http://www.cs.technion.ac.il/~biham/BT/bt-
fixed-coordinate-invalid-curve-attack.pdf, Accessed: 2018-10-30.

[25] Biondi, Philippe. Scapy. http://www.secdev.org/projects/scapy.

[26] Bluetooth SIG. Bluetooth Network Encapsulation Protocol. http://grouper.
ieee.org/groups/802/15/Bluetooth/BNEP.pdf, Accessed: 2018-10-28.
2001.

https://dl.acm.org/citation.cfm?id=3140253
https://dl.acm.org/citation.cfm?id=3140253
https://armis.com/blueborne/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://safecurves.cr.yp.to
http://dl.acm.org/citation.cfm?id=1159787
http://dl.acm.org/citation.cfm?id=1159787
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://www.secdev.org/projects/scapy
http://grouper.ieee.org/groups/802/15/Bluetooth/BNEP.pdf
http://grouper.ieee.org/groups/802/15/Bluetooth/BNEP.pdf

Bibliography 146

[27] Nikita Borisov, Ian Goldberg, and David Wagner. “Intercepting mobile com-
munications: the insecurity of 802.11”. In: Proceedings of the Annual international
Conference on Mobile computing and networking (MobiCom). ACM. 2001, pp. 180–
189.

[28] Elie Bursztein et al. “Webseclab Security Education Workbench”. In: Proc. of Con-
ference on Cyber Security Experimentation and Test (CSET). 2010.

[29] Dániel István Buza et al. “CryPLH: Protecting smart energy systems from tar-
geted attacks with a PLC honeypot”. In: Proceedings of the Workshop on Smart Grid
Security. Springer. 2014, pp. 181–192.

[30] A. A. Cárdenas et al. “Attacks against process control systems: Risk assessment,
detection, and response”. In: Proc. of the ACM Conference on Computer and Com-
munications Security (CCS). 2011.

[31] Martin Casado et al. “SANE: a protection architecture for enterprise networks”.
In: Proc. of the USENIX Security Symposium. 2006, pp. 137–151.

[32] Defense Use Case. “Analysis of the cyber attack on the Ukrainian power grid”.
In: Electricity Information Sharing and Analysis Center (E-ISAC) (2016).

[33] John Henry Castellanos et al. “Legacy-Compliant Data Authentication for In-
dustrial Control System Traffic”. In: Proceedings of the Conference on Applied Cryp-
tography and Network Security (ACNS). 2017.

[34] Rohan Chabukswar et al. “Simulation of network attacks on SCADA systems”.
In: First Workshop on Secure Control Systems (2010).

[35] Haowen Chan, Adrian Perrig, and Dawn Song. “Random key predistribution
schemes for sensor networks”. In: Proceedings of Symposium on Security and Pri-
vacy. IEEE. 2003, pp. 197–213.

[36] Yu-Chung Cheng et al. “Jigsaw: Solving the Puzzle of Enterprise 802.11 Analy-
sis”. In: Proc. of Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM). 2006. ISBN: 1-59593-308-5.

[37] Bill Cheswick. “An Evening with Berferd in Which a Cracker is Lured, Endured,
and Studied”. In: In Proceedings of the Winter USENIX Conference (1992), pp. 163–
174.

[38] Nicholas Childers et al. “Organizing large scale hacking competitions”. In: Proveed-
ings of conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment (DIMVA). 2010. DOI: 10.1007/978-3-642-14215-4_8.

[39] Cisco. Cisco’s Visual Networking Index Forecast Projects Nearly Half the World’s Pop-
ulation Will Be Connected to the Internet by 2017. https://newsroom.cisco.com/press-
release-content?articleId=1197391. 2013.

[40] CISCO. Industrial Ethernet: A Control Engineer’s Guide. www.cisco.com/web/
strategy/docs/manufacturing/industrial_ethernet.pdf.

[41] David D Coleman and David A Westcott. CWNA: Certified Wireless Network Ad-
ministrator Official Study Guide: Exam CWNA-106. Sybex, 2014.

[42] Crispin Cowan. “Defcon Capture the Flag: Defending vulnerable code from in-
tense attack”. In: Proc. of DARPA Information Survivability Conference and Exposi-
tion (DISCEX). 2003.

https://doi.org/10.1007/978-3-642-14215-4_8
www.cisco.com/web/strategy/docs/manufacturing/industrial_ethernet.pdf
www.cisco.com/web/strategy/docs/manufacturing/industrial_ethernet.pdf

Bibliography 147

[43] Bob Cromwell. The Problem With Government-Imposed Backdoors. https://cromwell-
intl.com/cybersecurity/backdoors.html, Accessed: 2019-2-4.

[44] B P Crow et al. “IEEE 802.11 Wireless Local Area Networks”. In: IEEE Commu-
nications Magazine (1997). ISSN: 01636804. DOI: 10.1109/35.620533. URL:
http : / / ieeexplore . ieee . org / lpdocs / epic03 / wrapper . htm ?
arnumber=620533.

[45] CTFtime. https://defcon.org/. Accessed: 2016-10-19.

[46] Miller Damien and Friedl Markus. Chroot in OpenSSH. http://undeadly.
org/cgi?action=article&sid=20080220110039.

[47] DEF CON Hacking Conference. https://defcon.org/. Accessed: 2016-10-19.

[48] Arnaud Delmas. A C implementation of the Bluetooth stream cipher E0. https:
//github.com/adelmas/e0, Accessed: 2018-10-28.

[49] Android Developers. Utilities for encoding and decoding the Base64 representation
of binary data. https://developer.android.com/reference/android/
util/Base64, Accessed: 2018-01-26.

[50] Danny Dolev and Andrew Yao. “On the security of public key protocols”. In:
IEEE Transactions on information theory 29.2 (1983), pp. 198–208.

[51] L Dong, A P Petropulu Z. Han, and H V Poor. “Improving wireless physical
layer security via cooperating relays”. In: IEEE Transactions on Signal Processing
(2010).

[52] Xinshu Dong et al. “Software-Defined Networking for Smart Grid Resilience:
Opportunities and Challenges”. In: In Proc. of The Cyber-Physical System Security
Workshop (CPSS). Singapore, 2015.

[53] John Dunning. “Taming the blue beast: A survey of Bluetooth based threats”.
In: IEEE Security & Privacy 8.2 (2010), pp. 20–27.

[54] Chris Eagle and John L Clark. Capture-the-flag: Learning computer security under
fire. Tech. rep. DTIC Document, 2004.

[55] Manuel Egele et al. “An Empirical Study of Cryptographic Misuse in Android
Applications”. In: Proceedings of the ACM SIGSAC Conference on Computer & Com-
munications Security (CCS). Berlin, Germany: ACM, 2013, pp. 73–84. ISBN: 978-1-
4503-2477-9.

[56] Elasticsearch: Open Source, Distributed, RESTful Search Engine. https://github.
com/elastic/elasticsearch. Accessed: 2016-10-19.

[57] Ellisys. Ellisys protocol test solutions. https://www.ellisys.com/, Accessed:
2018-10-28.

[58] Ettercap Project. Ettercap. https://ettercap.github.io/ettercap/.

[59] Nicolas Falliere, L.O. Murchu, and Eric Chien. “W32. Stuxnet Dossier”. In: Syman-
tec Security Response (2011). URL: http://large.stanford.edu/courses/
2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf.

https://cromwell-intl.com/cybersecurity/backdoors.html
https://cromwell-intl.com/cybersecurity/backdoors.html
https://doi.org/10.1109/35.620533
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=620533
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=620533
https://defcon.org/
http://undeadly.org/cgi?action=article&sid=20080220110039
http://undeadly.org/cgi?action=article&sid=20080220110039
https://defcon.org/
https://github.com/adelmas/e0
https://github.com/adelmas/e0
https://developer.android.com/reference/android/util/Base64
https://developer.android.com/reference/android/util/Base64
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://www.ellisys.com/
https://ettercap.github.io/ettercap/
http://large.stanford.edu/courses/2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf
http://large.stanford.edu/courses/2011/ph241/grayson2/docs/w32{_}stuxnet{_}dossier.pdf

Bibliography 148

[60] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The Road to SDN”. In:
ACM Queue 11.12 (2013), pp. 20–40. ISSN: 15427730. DOI: 10.1145/2559899.
2560327. URL: http://dl.acm.org/citation.cfm?doid=2559899.
2560327.

[61] Scott Fluhrer and Stefan Lucks. “Analysis of the E0 encryption system”. In: In-
ternational Workshop on Selected Areas in Cryptography. Springer. 2001, pp. 38–48.

[62] Aurélien Francillon, Boris Danev, and Srdjan Capkun. “Relay attacks on passive
keyless entry and start systems in modern cars”. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS). Eidgenössische Technische
Hochschule Zürich, Department of Computer Science. 2011.

[63] Brendan Galloway, Gerhard P Hancke, et al. “Introduction to industrial control
networks.” In: IEEE Communications Surveys and Tutorials (2013).

[64] Hamid Reza Ghaeini et al. “State-Aware Anomaly Detection for Industrial Con-
trol Systems”. In: Proceedings of Symposium on Applied Computing (SAC). 2018.

[65] Andrea Goldsmith. Wireless communications. Cambridge university press, 2005.

[66] Google. BoringSSL is a fork of OpenSSL that is designed to meet Google’s needs.
https://boringssl.googlesource.com/boringssl/, Accessed: 2018-
01-26.

[67] Google. Conscrypt is a Java Security Provider. https://www.conscrypt.org/,
Accessed: 2018-01-26.

[68] Google. Nearby Connections: Advertise and Discover. https://developers.
google.com/nearby/connections/android/discover-devices, Ac-
cessed: 2018-07-17. 2018.

[69] Google. Nearby Connections: Get Started. https://developers.google.
com/nearby/connections/android/get-started, Accessed: 2018-07-
17. 2017.

[70] Google. Nearby Connections: Manage Connections. https://developers.google.
com/nearby/connections/android/manage-connections, Accessed:
2018-07-17. 2018.

[71] Google. Nearby Connections: Strategies. https://developers.google.com/
nearby/connections/strategies, Accessed: 2018-07-17. 2017.

[72] Google. Nearby Connections: v11 update. https://developers.google.
com/nearby/connections/v11-update, Accessed: 2018-07-17. 2017.

[73] Google. Nearby Connections: Wi-Fi Issues. ttps://stackoverflow.com/
questions/49401461, Accessed: 2018-07-17. 2018.

[74] Google. RockPaperScissors Sample App for Nearby APIs on Android. https://
github.com/googlesamples/android-nearby/tree/master/connections/
rockpaperscissors, Accessed: 2018-07-17. 2018.

[75] Google. Samples for Nearby APIs on Android. https://github.com/googlesamples/
android-nearby/tree/master/connections, Accessed: 2018-07-17. 2018.

[76] P. K. Gopala, Lifeng Lai, and H. El Gamal. “On the Secrecy Capacity of Fading
Channels”. In: IEEE Transactions on Information Theory (2008).

https://doi.org/10.1145/2559899.2560327
https://doi.org/10.1145/2559899.2560327
http://dl.acm.org/citation.cfm?doid=2559899.2560327
http://dl.acm.org/citation.cfm?doid=2559899.2560327
https://boringssl.googlesource.com/boringssl/
https://www.conscrypt.org/
https://developers.google.com/nearby/connections/android/discover-devices
https://developers.google.com/nearby/connections/android/discover-devices
https://developers.google.com/nearby/connections/android/get-started
https://developers.google.com/nearby/connections/android/get-started
https://developers.google.com/nearby/connections/android/manage-connections
https://developers.google.com/nearby/connections/android/manage-connections
https://developers.google.com/nearby/connections/strategies
https://developers.google.com/nearby/connections/strategies
https://developers.google.com/nearby/connections/v11-update
https://developers.google.com/nearby/connections/v11-update
ttps://stackoverflow.com/questions/49401461
ttps://stackoverflow.com/questions/49401461
https://github.com/googlesamples/android-nearby/tree/master/connections/rockpaperscissors
https://github.com/googlesamples/android-nearby/tree/master/connections/rockpaperscissors
https://github.com/googlesamples/android-nearby/tree/master/connections/rockpaperscissors
https://github.com/googlesamples/android-nearby/tree/master/connections
https://github.com/googlesamples/android-nearby/tree/master/connections

Bibliography 149

[77] Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and the US surveil-
lance state. Metropolitan Books, 2014. ISBN: 1250062586.

[78] Julian B. Grizzard, Sven Krasser, and Henry L. Owen. “The Use of Honeynets
to Increase Computer Network Security and User Awareness”. In: Journal of Se-
curity Education 1.2-3 (2005), pp. 23–37.

[79] Guardsquare. ProGuard: The open source optimizer for Java bytecode. https://
www.guardsquare.com/en/products/proguard, Accessed: 2018-07-17.
2018.

[80] Ramakrishna Gummadi et al. “Understanding and mitigating the impact of RF
interference on 802.11 networks”. In: ACM SIGCOMM Computer Communication
Review (2007).

[81] Keijo Haataja and Pekka Toivanen. “Two practical man-in-the-middle attacks
on bluetooth secure simple pairing and countermeasures”. In: IEEE Transactions
on Wireless Communications 9.1 (2010).

[82] Nikhil Handigol et al. “Reproducible Network Experiments Using Container-
based Emulation”. In: Proc. of Conference on Emerging Networking Experiments
and Technologies (CoNEXT). CoNEXT ’12. Nice, France: ACM, 2012, pp. 253–
264. ISBN: 978-1-4503-1775-7. DOI: 10.1145/2413176.2413206. URL: http:
//doi.acm.org/10.1145/2413176.2413206.

[83] Alfred Hero. “Secure space-time communication”. In: IEEE Transactions on Infor-
mation Theory (2003).

[84] Guido R Hiertz et al. “The IEEE 802.11 universe”. In: IEEE Communications Mag-
azine (2010).

[85] T Holczer, M Félegyházi, and L Buttyán. The design and implementation of a PLC
honeypot for detecting cyber attacks against industrial control systems. https://
www.crysys.hu/publications/files/HolczerFB2015CN.pdf. 2015.

[86] Yih-Chun Hu, Adrian Perrig, and David B Johnson. “Wormhole attacks in wire-
less networks”. In: IEEE journal on selected areas in communications 24.2 (2006),
pp. 370–380.

[87] IEEE. IEEE 802.11 Part 11: Wireless LAN Medium Access Control (MAC) and Physi-
cal Layer (PHY) Specifications. http://standards.ieee.org/getieee802/download/802.11-
2016.pdf. 2016.

[88] IETF. Counter with CBC-MAC (CCM). https://www.ietf.org/rfc/rfc3610.
txt, Accessed: 2018-10-28.

[89] Dragos Inc. TRISIS Malware: Analysis of Safety System Targeted Malware. https:
//dragos.com/blog/trisis/TRISIS-01.pdf. 2017.

[90] SANS institute. The State of Security in Control Systems Today. https://www.
sans.org/reading-room/whitepapers/analyst/state-security-
control-systems-today-36042. 2015.

[91] Internet Security Research Group (ISRG). Let’s Encrypt. https://letsencrypt.
org/.

https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
https://doi.org/10.1145/2413176.2413206
http://doi.acm.org/10.1145/2413176.2413206
http://doi.acm.org/10.1145/2413176.2413206
https://www.crysys.hu/publications/files/HolczerFB2015CN.pdf
https://www.crysys.hu/publications/files/HolczerFB2015CN.pdf
https://www.ietf.org/rfc/rfc3610.txt
https://www.ietf.org/rfc/rfc3610.txt
https://dragos.com/blog/trisis/TRISIS-01.pdf
https://dragos.com/blog/trisis/TRISIS-01.pdf
https://www.sans.org/reading-room/whitepapers/analyst/state-security-control-systems-today-36042
https://www.sans.org/reading-room/whitepapers/analyst/state-security-control-systems-today-36042
https://www.sans.org/reading-room/whitepapers/analyst/state-security-control-systems-today-36042
https://letsencrypt.org/
https://letsencrypt.org/

Bibliography 150

[92] Teerawat Issariyakul and Ekram Hossain. Introduction to Network Simulator NS2.
1st ed. Springer Publishing Company, Incorporated, 2008. ISBN: 0387717595,
9780387717593.

[93] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “Practical invalid curve at-
tacks on TLS-ECDH”. In: European Symposium on research in computer security.
Springer. 2015, pp. 407–425.

[94] Markus Jakobsson and Susanne Wetzel. “Security weaknesses in Bluetooth”. In:
Cryptographers’ Track at the RSA Conference. Springer. 2001, pp. 176–191.

[95] Avinash Kak. BitVector.py. https://engineering.purdue.edu/kak/
dist/BitVector-3.4.8.html, Accessed: 2018-10-28.

[96] Eunsuk Kang et al. “Model-Based Security Analysis of a Water Treatment Sys-
tem”. In: Proc. of Workshop on Software Engineering for Smart Cyber-Physical Sys-
tems (SEsCPS). 2016.

[97] Bounpadith Kannhavong et al. “A survey of routing attacks in mobile ad hoc
networks”. In: IEEE Wireless communications 14.5 (2007).

[98] Karl M Kapp. The gamification of learning and instruction: game-based methods and
strategies for training and education. John Wiley & Sons, 2012.

[99] Chris Karlof and David Wagner. “Secure routing in wireless sensor networks:
Attacks and countermeasures”. In: Proceedings of the Workshop on Sensor Network
Protocols and Applications. IEEE. 2003, pp. 113–127.

[100] John Kelsey, Bruce Schneier, and David Wagner. “Key schedule weaknesses
in SAFER+”. In: The Second Advanced Encryption Standard Candidate Conference.
1999, pp. 155–167.

[101] Paraskevas Kitsos et al. “Hardware implementation of Bluetooth security”. In:
IEEE Pervasive Computing 1 (2003), pp. 21–29.

[102] Constantinos Kolias et al. “Intrusion detection in 802.11 networks: empirical
evaluation of threats and a public dataset”. In: IEEE Communications Surveys
& Tutorials (2016).

[103] Sandeep Kumar et al. “Breaking ciphers with COPACOBANA–a cost-optimized
parallel code breaker”. In: International Workshop on Cryptographic Hardware and
Embedded Systems. Springer. 2006, pp. 101–118.

[104] Perry Kundert. Communications Protocol Python Parser and Originator. https:
//github.com/pjkundert/cpppo. [Online; accessed 14-June-2015].

[105] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks”. In: Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks. ACM, 2010. ISBN: 978-1-4503-0409-2.
DOI: 10.1145/1868447.1868466.

[106] S. K. Leung-Yan-Cheong and Martin E. Hellman. “The Gaussian Wire-Tap Chan-
nel”. In: IEEE Transactions on Information Theory (1978).

[107] Michael Liljenstam et al. “RINSE: The Real-time Immersive Network Simulation
Environment for network security exercises”. In: Proc. of Workshop on Principles
of Advanced and Distributed Simulation (PADS). 2005, pp. 119–128. ISBN: 0-7695-
2383-8. DOI: 10.1109/PADS.2005.23.

https://engineering.purdue.edu/kak/dist/BitVector-3.4.8.html
https://engineering.purdue.edu/kak/dist/BitVector-3.4.8.html
https://github.com/pjkundert/cpppo
https://github.com/pjkundert/cpppo
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/PADS.2005.23

Bibliography 151

[108] J. Lin et al. “On false data injection attacks against distributed energy routing in
smart grid”. In: Conference on Cyber-Physical Systems (ICCPS). 2012.

[109] Samuel Litchfield et al. Poster: Re-thinking the Honeypot for Cyber-Physical Systems.
Poster at IEEE Symposium on Security and Privacy. 2016.

[110] Donggang Liu, Peng Ning, and Rongfang Li. “Establishing pairwise keys in
distributed sensor networks”. In: ACM Transactions on Information and System
Security (TISSEC) 8.1 (2005), pp. 41–77.

[111] Eric Luiijf. “Cyber (In-) security of Industrial Control Systems: A Societal Chal-
lenge”. In: International Conference on Computer Safety, Reliability, and Security
(SafeComp). Springer. 2015.

[112] Eric Luijif and Bert Jan te Paske. Cyber Security of Industrial Control Systems. TNO
technical report. https://www.tno.nl/ics-security/. 2015.

[113] Musaria K Mahmood et al. “MATLAB Implementation of 128-key length SAFER+
Cipher System”. In: ().

[114] Dennis Mantz. InternalBlue. https://github.com/seemoo-lab/internalblue,
Accessed: 2018-10-30.

[115] Konstantinos Markantonakis et al. “Practical relay attack on contactless trans-
actions by using NFC mobile phones”. In: Proceedings of Workshop on Radio Fre-
quency Identification System Security (RFIDsec) 12 (2012), p. 21.

[116] Stephen Martin. Directional Gain of IEEE 802.11 MIMO Devices Employing Cyclic
Delay Diversity. 2013. URL: https://apps.fcc.gov/kdb/GetAttachment.
html?id=zx796foayVA0TnNkVOgKjg%3D%3D&desc=OET%2013TR1003%
20Directonal%20Gain%20of%20802%2011%20MIMO%20with%20CDD%
2004%2005%202013&tracking_number=49466.

[117] James L Massey, Gurgen H Khachatrian, and Melsik K Kuregian. “Nomina-
tion of SAFER+ as candidate algorithm for the Advanced Encryption Standard
(AES)”. In: NIST AES Proposal (1998).

[118] John C Matherly. SHODAN the computer search engine. https://www.shodan.
io. Accessed: 2016-08-01.

[119] Aditya Mathur and Nils Ole Tippenhauer. “A Water Treatment Testbed for Re-
search and Training on ICS Security”. In: Proceedings of Workshop on Cyber-Physical
Systems for Smart Water Networks (CySWater). Apr. 2016.

[120] Nick Mckeown et al. “OpenFlow: enabling innovation in campus networks”.
In: Computer Communication Review 38.2 (2008), pp. 69–74. ISSN: 01464833. DOI:
10.1145/1355734.1355746.

[121] Martin Mink and Rainer Greifeneder. “Evaluation of the offensive approach in
information security education”. In: Proc. of IFIP International Information Secu-
rity Conference (IFIP SEC). 2010.

[122] Arunesh Mishra, Minho Shin, and William Arbaugh. “An empirical analysis
of the IEEE 802.11 MAC layer handoff process”. In: ACM SIGCOMM Computer
Communication Review (2003).

https://www.tno.nl/ics-security/
https://github.com/seemoo-lab/internalblue
https://apps.fcc.gov/kdb/GetAttachment.html?id=zx796foayVA0TnNkVOgKjg%3D%3D&desc=OET%2013TR1003%20Directonal%20Gain%20of%20802%2011%20MIMO%20with%20CDD%2004%2005%202013&tracking_number=49466
https://apps.fcc.gov/kdb/GetAttachment.html?id=zx796foayVA0TnNkVOgKjg%3D%3D&desc=OET%2013TR1003%20Directonal%20Gain%20of%20802%2011%20MIMO%20with%20CDD%2004%2005%202013&tracking_number=49466
https://apps.fcc.gov/kdb/GetAttachment.html?id=zx796foayVA0TnNkVOgKjg%3D%3D&desc=OET%2013TR1003%20Directonal%20Gain%20of%20802%2011%20MIMO%20with%20CDD%2004%2005%202013&tracking_number=49466
https://apps.fcc.gov/kdb/GetAttachment.html?id=zx796foayVA0TnNkVOgKjg%3D%3D&desc=OET%2013TR1003%20Directonal%20Gain%20of%20802%2011%20MIMO%20with%20CDD%2004%2005%202013&tracking_number=49466
https://www.shodan.io
https://www.shodan.io
https://doi.org/10.1145/1355734.1355746

Bibliography 152

[123] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: exploit-
ing the SSL 3.0 fallback. https://www.openssl.org/~bodo/ssl-poodle.
pdf, Accessed: 2019-02-04. 2014.

[124] James R. Moyne and D.M. Tilbury. “The Emergence of Industrial Control Net-
works for Manufacturing Control, Diagnostics, and Safety Data”. In: Proceedings
of the IEEE 95.1 (Jan. 2007), pp. 29–47. ISSN: 0018-9219. DOI: 10.1109/JPROC.
2006.887325.

[125] Amitav Mukherjee and A Lee Swindlehurst. “Robust Beamforming for Security
in MIMO Wiretap Channels With Imperfect CSI”. In: IEEE Transactions on Signal
Processing (2013).

[126] Bruce Roy Munson et al. Fluid mechanics. Wiley Singapore, 2013.

[127] Muhammad Naveed et al. “Inside Job: Understanding and Mitigating the Threat
of External Device Mis-Binding on Android.” In: Proceedings of the Network and
Distributed System Security Symposium (NDSS). 2014.

[128] NOXRepo.org. The POX controller. https://github.com/noxrepo/pox.
[Online; accessed 14-June-2015].

[129] ODVA. Ethernet/IP Technology Overview. https://www.odva.org/Home/
ODVATECHNOLOGIES/EtherNetIP.aspx. Accessed: 2016-08-01.

[130] Frédérique Oggier and Babak Hassibi. “The secrecy capacity of the MIMO wire-
tap channel”. In: IEEE Transactions on Information Theory (2011).

[131] R.L.S. de Oliveira et al. “Using Mininet for emulation and prototyping Software-
Defined Networks”. In: Proc. of Conference on Communications and Computing
(COLCOM). 2014, pp. 1–6. DOI: 10.1109/ColComCon.2014.6860404.

[132] Eng Hwee Ong et al. “IEEE 802.11 ac: Enhancements for very high throughput
WLANs”. In: Personal Indoor and Mobile Radio Communications (PIMRC), 2011
IEEE 22nd International Symposium on. IEEE. 2011.

[133] Open Networking Foundation. “Software-Defined Networking: The New Norm
for Networks [white paper]”. In: ONF White Paper (2012), pp. 1–12.

[134] Michel Ossmann. HackRF: low cost SDR platform. https://greatscottgadgets.
com/hackrf, Accessed: 2019-05-01.

[135] Ossmann, Michael. Project Ubertooth. https://github.com/greatscottgadgets/
ubertooth/.

[136] Yin Minn Pa Pa et al. “IoTPOT: Analysing the Rise of IoT Compromises”. In: 9th
USENIX Workshop on Offensive Technologies (WOOT). USENIX Association, 2015.

[137] John Padgette. “Guide to bluetooth security”. In: NIST Special Publication 800
(2017), p. 121.

[138] Vern Paxson. “Bro: a system for detecting network intruders in real-time”. In:
Computer Networks (1999), pp. 2435–2463. ISSN: 13891286.

[139] Kostas P Peppas, Nikos C Sagias, and Andreas Maras. “Physical layer secu-
rity for multiple-antenna systems: A unified approach”. In: IEEE Transactions on
Communications (2016).

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://doi.org/10.1109/JPROC.2006.887325
https://doi.org/10.1109/JPROC.2006.887325
https://github.com/noxrepo/pox
https://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP.aspx
https://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP.aspx
https://doi.org/10.1109/ColComCon.2014.6860404
https://greatscottgadgets.com/hackrf
https://greatscottgadgets.com/hackrf
https://github.com/greatscottgadgets/ubertooth/
https://github.com/greatscottgadgets/ubertooth/

Bibliography 153

[140] Eldad Perahia and Robert Stacey. Next generation wireless LANs: 802.11 n and
802.11 ac. Cambridge University Press, 2013.

[141] Adrian Perrig, John Stankovic, and David Wagner. “Security in wireless sensor
networks”. In: Communications of the ACM 47.6 (2004), pp. 53–57.

[142] Tom Phinney. IEC 62443: INDUSTRIAL NETWORK AND SYSTEM SECURITY.
https://www.isa.org/pdfs/autowest/phinneydone/.

[143] Christina Pöpper et al. “Investigation of Signal and Message Manipulations on
the Wireless Channel”. In: Proc. of the European Symposium on Research in Com-
puter Security. 2011.

[144] Kevin Poulsen. “Slammer worm crashed Ohio nuke plant net”. In: The Register
(2003).

[145] Vinay Uday Prabhu and Miguel RD Rodrigues. “On wireless channels with-
antenna eavesdroppers: Characterization of the outage probability and-outage
secrecy capacity”. In: IEEE Transactions on Information Forensics and Security (2011).

[146] Niels Provos. “A virtual honeypot framework”. In: Proc. of the USENIX Security
Symposium. 2004.

[147] J Radcliffe. Capture the flag for education and mentoring: A case study on the use
of competitive games in computer security training. http://www.sans.org/
reading-room/whitepapers/casestudies/capture-flag-education-
mentoring-33018. 2007.

[148] Ole André Ravnås. Frida: Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. https://www.frida.re/, Accessed: 2018-
01-26.

[149] Hamid Reza Ghaeini and Nils Ole Tippenhauer. “HAMIDS: Hierarchical Mon-
itoring Intrusion Detection System for Industrial Control Systems”. In: Proc. of
Workshop on Cyber-Physical Systems Security & Privacy (SPC-CPS). 2016.

[150] Jordan Robertson and Michael Riley. The Big Hack: How China Used a Tiny Chip to
Infiltrate U.S. Companies. https://www.bloomberg.com/news/features/
2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-
infiltrate-america-s-top-companies, Accessed: 2018-10-30.

[151] Pieter Robyns et al. “Exploiting WPA2-enterprise Vendor Implementation Weak-
nesses Through Challenge Response Oracles”. In: WiSec. ACM, 2014.

[152] Marco Rocchetto and Nils Ole Tippenhauer. “On Attacker Models and Profiles
for Cyber-Physical Systems”. In: Proc. of the European Symposium on Research in
Computer Security (ESORICS). 2016. DOI: 10.1007/2F978-3-319-45741-
3_22. URL: \url{http://link.springer.com/chapter/10.1007\
%2F978-3-319-45741-3_22}.

[153] Ronacher, Armin. Flask (A Python Microframework). http://flask.pocoo.
org/.

[154] Andrew Ruef et al. “Build It, Break It, Fix It: Contesting Secure Development”.
In: Proc. of the ACM Conference on Computer and Communications Security (CCS).
2016. URL: http://arxiv.org/abs/1606.01881.

https://www.isa.org/pdfs/autowest/phinneydone/
http://www. sans. org/reading-room/whitepapers/casestudies/capture-flag-education-mentoring-33018
http://www. sans. org/reading-room/whitepapers/casestudies/capture-flag-education-mentoring-33018
http://www. sans. org/reading-room/whitepapers/casestudies/capture-flag-education-mentoring-33018
https://www.frida.re/
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://doi.org/10.1007/2F978-3-319-45741-3_22
https://doi.org/10.1007/2F978-3-319-45741-3_22
\url{http://link.springer.com/chapter/10.1007\%2F978-3-319-45741-3_22}
\url{http://link.springer.com/chapter/10.1007\%2F978-3-319-45741-3_22}
http://flask.pocoo.org/
http://flask.pocoo.org/
http://arxiv.org/abs/1606.01881

Bibliography 154

[155] Agostino Ruscito. Pycomm: a collection of modules used to communicate with PLCs.
https://github.com/ruscito/pycomm. [Online; accessed 14-June-2015].

[156] Mike Ryan. “Bluetooth: With Low Energy Comes Low Security”. In: Proceedings
of USENIX Workshop on Offensive Technologies (WOOT). Vol. 13. 2013, pp. 4–4.

[157] Floris A Schoenmakers. Contradicting paradigms of control systems security: how
fundamental differences cause conflicts. 2013.

[158] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. “NexMon: A Cook-
book for Firmware Modifications on Smartphones to Enable Monitor Mode”.
In: arXiv preprint arXiv:1601.07077 (2015).

[159] Charlie Scott. Desigining and Implementing a Honeypot for SCADA Network. White
paper published by SANS Institute Infosec Reading Room. 2014.

[160] Yaniv Shaked and Avishai Wool. “Cracking the Bluetooth PIN”. In: Proceedings
of the conference on Mobile systems, applications, and services (MobiSys). ACM. 2005,
pp. 39–50.

[161] Anmol Sheth et al. “MOJO: A distributed physical layer anomaly detection sys-
tem for 802.11 WLANs”. In: Proceedings of the 4th international conference on Mobile
systems, applications and services. ACM. 2006.

[162] Bluetooth SIG. Bluetooth Core Specification v5.0. https://www.bluetooth.
org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043, Accessed:
2018-10-28. 2016.

[163] Jill Slay and Michael Miller. “Lessons Learned from the Maroochy Water Breach”.
In: International Conference on Critical Infrastructure Protection. Springer. 2007.

[164] Dominic Spill and Andrea Bittau. “BlueSniff: Eve Meets Alice and Bluetooth”.
In: Proc. of USENIX Workshop on Offensive Technologies (WOOT). USENIX, 2007.

[165] Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Reading, 2002, pp. 0–
321. ISBN: 0321108957.

[166] Lance Spitzner. “The honeynet project: Trapping the hackers”. In: IEEE Security
& Privacy 1.2 (2003), pp. 15–23.

[167] Cliff Stoll. The cuckoo’s egg: tracking a spy through the maze of computer espionage.
Simon and Schuster, 2005.

[168] Keith Stouffer, J Falco, and Karen Scarfone. Guide to Industrial Control Systems
(ICS) Security. http://industryconsulting.org/pdfFiles/NISTDraft-
SP800-82.pdf. Recommendations of the National Institute of Standards and
Technology. 2006.

[169] Keith Stouffer et al. Guide to Industrial Control Systems (ICS) Security (Revision 2).
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-82r2.pdf. Recommendations of the National Institute of Standards
and Technology. 2015.

[170] V. F. Taylor et al. “Robust Smartphone App Identification via Encrypted Net-
work Traffic Analysis”. In: IEEE Transactions on Information Forensics and Security
13.1 (2018), pp. 63–78. ISSN: 1556-6013. DOI: 10.1109/TIFS.2017.2737970.

[171] OpenWrt Developer Team. OpenWrt Wireless Freedom. https://openwrt.org/.

https://github.com/ruscito/pycomm
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
http://industryconsulting.org/pdfFiles/NIST Draft-SP800-82.pdf
http://industryconsulting.org/pdfFiles/NIST Draft-SP800-82.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://doi.org/10.1109/TIFS.2017.2737970

Bibliography 155

[172] Erik Tews and Martin Beck. “Practical attacks against WEP and WPA”. In: Pro-
ceedings of the second ACM conference on Wireless network security. ACM. 2009,
pp. 79–86.

[173] The Honeynet Project. Conpot. http://conpot.org/.

[174] Thenewstack.io. SDN Series. 2015. URL: http://thenewstack.io/defining-
software-defined-networking-part-1/.

[175] Nils Ole Tippenhauer et al. “On the requirements for successful GPS spoofing
attacks”. In: Proceedings of the ACM conference on Computer and communications
security (CCS). ACM. 2011, pp. 75–86.

[176] Juha T Vainio. “Bluetooth security”. In: Proceedings of Helsinki University of Tech-
nology, Telecommunications Software and Multimedia Laboratory, Seminar on Inter-
networking: Ad Hoc Networking, Spring. Vol. 5. 2000.

[177] B. Van Veen and K. Buckley. “Beamforming: A Versatile Approach to Spatial
Filtering”. In: IEEE ASSP Magazine (1988).

[178] Mathy Vanhoef and Frank Piessens. “Key reinstallation attacks: Forcing nonce
reuse in WPA2”. In: Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM. 2017, pp. 1313–1328.

[179] András Varga et al. “The OMNeT++ discrete event simulation system”. In: Proc.
of the European simulation multiconference (ESM). sn. 2001, p. 65.

[180] Giovanni Vigna. “Teaching network security through live exercises”. In: Security
education and critical infrastructures. Springer, 2003.

[181] Joao P Vilela et al. “Wireless secrecy regions with friendly jamming”. In: IEEE
Transactions on Information Forensics and Security 6.2 (2011), pp. 256–266.

[182] E.K. Wang et al. “Security Issues and Challenges for Cyber Physical System”.
In: Proc. of Conference on Cyber, Physical and Social Computing (CPSCom). 2010,
pp. 733 –738.

[183] J. Wang, J. Lee, and T. Q. S. Quek. “Best Antenna Placement for Eavesdroppers:
Distributed or Co-Located?” In: IEEE Communications Letters (2016).

[184] S. Weerakkody, Yilin Mo, and B. Sinopoli. “Detecting integrity attacks on control
systems using robust physical watermarking”. In: Proc. of Conference on Decision
and Control (CDC). IEEE, 2014.

[185] Joseph Werther et al. “Experiences in Cyber Security Education: The MIT Lin-
coln Laboratory Capture-the-flag Exercise”. In: Proc. of the Conference on Cyber
Security Experimentation and Test (CSET). San Francisco, CA: USENIX Associa-
tion, 2011.

[186] Sean Whalen. An introduction to ARP spoofing. machacking.net/kb/files/
arpspoof.pdf. 2001.

[187] Matthias Wilhelm et al. “Short paper: reactive jamming in wireless networks:
how realistic is the threat?” In: Proceedings of the fourth ACM conference on Wireless
network security. ACM. 2011, pp. 47–52.

[188] Kyle Wilhoit. The SCADA that didn’t cry wolf. Whitepaper. 2013.

http://conpot.org/
http://thenewstack.io/defining-software-defined-networking-part-1/
http://thenewstack.io/defining-software-defined-networking-part-1/
machacking.net/kb/files/arpspoof.pdf
machacking.net/kb/files/arpspoof.pdf

Bibliography 156

[189] Kyle Wilhoit. Who’s really attacking your ICS equipment? http://www.edgis-
security . org / honeypot / whos - really - attacking - your - ics -
devices/. Whitepaper. 2013.

[190] Ford-Long Wong and Frank Stajano. “Location privacy in Bluetooth”. In: Euro-
pean Workshop on Security in Ad-hoc and Sensor Networks. Springer. 2005, pp. 176–
188.

[191] A. D. Wyner. “The Wiretap Channel”. In: Bell System Technical Journal (1975).

[192] Nan Yang et al. “Transmit antenna selection for security enhancement in MIMO
wiretap channels”. In: IEEE Transactions on Communications (2013).

[193] Wanqing You and Kai Qian. “OpenFlow Security Threat Detection and Defense
Services”. In: Int. J. Advanced Networking and Applications 2351 (2014), pp. 2347–
2351.

[194] A. Zaalouk et al. “OrchSec: An orchestrator-based architecture for enhancing
network-security using Network Monitoring and SDN Control functions”. In:
Proc. of Network Operations and Management Symposium (NOMS). 2014, pp. 1–9.

[195] Mark Zeller. “Myth or reality-does the aurora vulnerability pose a risk to my
generator”. In: Protective Relay Engineers, 2011 64th Annual Conference for. IEEE.
2011, pp. 130–136.

[196] B. Zhu, A. Joseph, and S. Sastry. “A Taxonomy of Cyber Attacks on SCADA
Systems”. In: Proc. of Conference on Cyber, Physical and Social Computing. 2011,
pp. 380–388.

[197] S. Zonouz et al. “SCPSE: Security-Oriented Cyber-Physical State Estimation for
Power Grid Critical Infrastructures”. In: Smart Grid, IEEE Transactions on 3.4
(2012), pp. 1790–1799.

[198] Yulong Zou et al. “Improving physical-layer security in wireless communica-
tions using diversity techniques”. In: IEEE Network (2015).

http://www.edgis-security.org/honeypot/whos-really-attacking-your-ics-devices/
http://www.edgis-security.org/honeypot/whos-really-attacking-your-ics-devices/
http://www.edgis-security.org/honeypot/whos-really-attacking-your-ics-devices/

	Abstract
	Publications
	Acknowledgements
	Contents
	I Cyber-physical systems security
	Introduction to Cyber-Physical Systems Security
	Problem Statement
	Our Vision, Research Directions and Questions
	Cyber-Physical Systems Security Contributions

	MiniCPS: A toolkit for security research on CPS networks
	Introduction
	CPS Networks and Mininet
	MiniCPS
	Example Application: MitM traffic manipulations
	Example Application: SDN
	Related work
	Conclusion

	Towards high-interaction virtual ICS honeypots-in-a-box
	Introduction
	Background
	High-Interaction, Virtual ICS Honeypot Design
	Honeypot Implementation with MiniCPS
	Evaluation
	Related work
	Conclusion

	Gamifying ICS Security Training and Research: Design, Implementation, and Results of S3
	Introduction
	Background
	Gamifying Education and Research on ICS Security
	Online phase of S3
	Live phase of S3
	Related work
	Conclusions

	Conclusion about Cyber-Physical Systems Security
	Lessons Learnt
	Future Work

	II Wireless systems security
	Introduction to Wireless Systems Security
	Problem Statement
	Our Vision, Research Directions and Questions
	Wireless Systems Security Contributions

	Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN
	Introduction
	Background
	Passive 802.11 Downlink Eavesdropping
	Experimental Validation
	Related Work
	Conclusions

	Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’ on Android
	Introduction
	Background
	Reversing and Analyzing Nearby Connections
	Attacking Nearby Connections
	REarby Toolkit Implementation
	Related Work
	Conclusion

	The KNOB is broken: Exploiting Low Entropy in the Encryption Key Negotiation of Bluetooth BR/EDR
	Introduction
	Background
	Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR
	Implementation
	Evaluation
	Discussion
	Related Work
	Conclusion

	Conclusion about Wireless Systems Security
	Lessons Learnt
	Future Work

	Bibliography

