PhD Thesis Defense 2019 @ SUTD

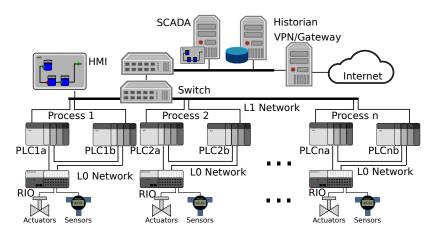
Design, Implementation, and Evaluation of Secure Cyber-Physical and Wireless Systems

Daniele Antonioli

Singapore University of Technology and Design (SUTD)

Design, Implementation, and Evaluation of Secure Cyber-Physical and Wireless Systems

- Thesis's structure
 - Part I: Cyber-physical systems security (Chapter 1-5)
 - Part II: Wireless systems security (Chapter 6-10)
 - TL;DR: Read sections 1.3 and 6.3
- Main collaborations
 - SUTD (P. Szalachowski), University of Oxford (K. Rasmussen), and CISPA (N. O. Tippenhauer)



Cyber-Physical Systems (CPS)

- Interconnected devices managing a physical process
 - Information technology (IT)
 - Operational technology (OT)

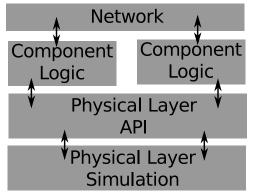
- Securing CPS is paramount, yet challenging
 - Cyber, physical, and cyber-physical attacks
 - Wired and wireless connections (to the Internet)
- High impact attacks on CPS
 - E.g. Stuxnet (nuclear), BlackEnergy (smart grid), TRISIS/TRITON (safety)

CPS Security Challenges and Research Questions

• C1: Evaluation of CPS (IT and OT) technologies

▶ Q1: Can we build a low-cost real-time simulation environment for CPS? [CPS-SPC15]

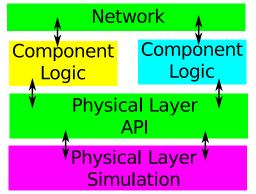
C2: Cyber-physical attacks


Q2: Can we detect and mitigate cyber-physical attacks? [CPS-SPC16]

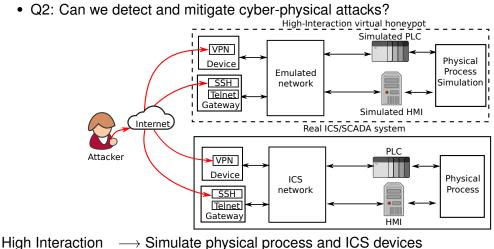
C3: CPS security education

► Q3: Can we fill the gaps between IT and OT security professionals? [CPS-SPC17]

MiniCPS: A toolkit for security research on CPS networks [CPS-SPC15]


• Q1: Can we build a low-cost real-time simulation environment for CPS?

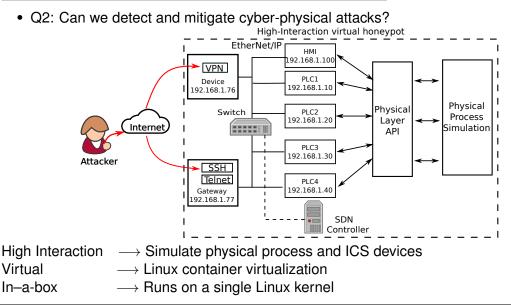
- (C)yber \longrightarrow Network Emulation
- $(\mathsf{P}) hysical \quad \longrightarrow \mathsf{P} hysical \ Layer \ Simulation \ and \ \mathsf{API}$
- (S)ystem \longrightarrow Simulation of Control Devices


MiniCPS: A toolkit for security research on CPS networks [CPS-SPC15]

• Q1: Can we build a low-cost real-time simulation environment for CPS?

- (C)yber \longrightarrow Network Emulation
- $(\mathsf{P}) hysical \quad \longrightarrow \mathsf{P} hysical \ Layer \ Simulation \ and \ \mathsf{API}$
- (S)ystem \longrightarrow Simulation of Control Devices

Towards high-interaction virtual ICS honeypots-in-a-box [CPS-SPC16]



- raction \rightarrow Simulate physical process and ICS de
 - \longrightarrow Linux container virtualization
 - \longrightarrow Runs on a single Linux kernel

Virtual

In-a-box

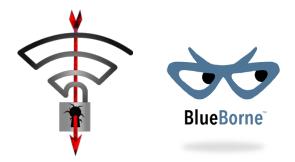
Towards high-interaction virtual ICS honeypots-in-a-box [CPS-SPC16]

Gamifying ICS Security Training and Research: Design, Implementation, and Results of S3 [CPS-SPC17]

Q3: Can we fill the gaps between IT and OT security professionals?

- SWaT Security Showdown (S3) contest
 - ICS-centric, gamified security competition
 - We run it at SUTD in 2016 and 2017
 - IT and OT security professionals from academia and industry
- MiniCPS based security challenges
 - Evaluate MiniCPS as an educational tool
 - E.g. MitM attacks, sensor and actuator manipulations
- Main outcomes
 - Conducted (novel) attacks
 - Evaluated (novel) defenses

CPS includes Wireless Communication Systems


- Wireless systems (thesis's Part II)
 - Transmission and reception of electro-magnetic (EM) signals
 - Over a wireless physical layer (e.g. over the air)
- · Pervasive use cases
 - Mobile communications: Wi-Fi, Bluetooth, and cellular
 - Localization: GPS and RFID

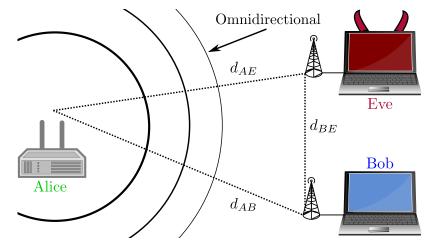
Wireless Systems Security

- · Wireless systems security is important, yet hard
 - Wireless channel is broadcast
 - ► Threats: eavesdropping, jamming, etc.
- Recent high impact attacks
 - Wi-Fi: Key Reinstallation AttaCK (KRACK) on WPA2
 - Bluetooth: BlueBorne implementation flaws on Android and Linux

- C1: Wireless physical layer as a defense mechanism
 - Q1: Can we leverage deployed physical layer features to secure communications? [CANS17]
- C2: Complexity and accessibility of wireless technologies
 - Q2: Can we analyze and evaluate (proprietary) wireless technologies? [NDSS19]
- C3: Security evaluations and hardening of wireless technologies
 - Q3: Can we harden already deployed technologies? [USEC19]

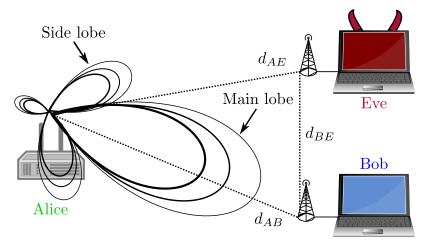
• C1: Wireless physical layer as a defense mechanism

 Q1: Can we leverage deployed physical layer features to secure communications? [CANS17]


- Physical layer (PHY)
 - From bits to EM signals and vice versa
- Wireless PHY security
 - Security guarantees from some physical layer features
 - E.g. beamforming
- Q1: Can we leverage deployed physical layer features to secure communications?
 - Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN [CANS17]

Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN [CANS17]

- IEEE 802.11 PHY features
 - 802.11b: single antenna, omnidirectional (SISO)
 - 802.11n/ac: multiple antenna, beamforming (MIMO)
- Threat model
 - Alice (access point) communicates with Bob (user)
 - Eve (attacker) wants to eavesdrop the downlink from Alice to Bob
- Is Eve affected by 802.11n/ac PHY features compared to 802.11b?
 - If yes, we should use it (together with crypto)



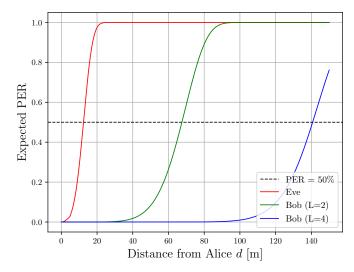
802.11b Downlink (SISO, omnidirectional)

- 802.11b
 - Alice uses 1 antennas
 - Eve's eavesdropping success depends on: d_{AE}

802.11n/ac Downlink (MISO, beamforming)

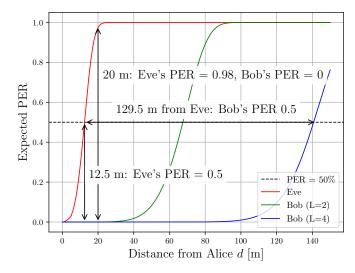
• 802.11n/ac

- Alice uses L antennas to dynamically beamform towards Bob
- Bob experiences a gain but Eve does not
- ► Eve's eavesdropping success depends on: *d*_{AE}, *d*_{BE}, and *L*

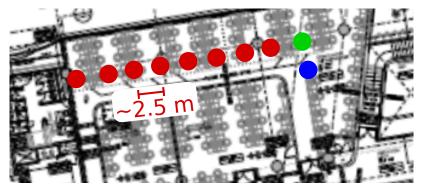

Metrics

- Signal-to-Noise-Ratio (SNR)
 - Power of the useful signal divided by the noise power at the receiver
 - Usually expressed in dB (10 log₁₀ SNR = SNR_{dB})
- Bit-Error-Rate (BER)
 - Probability of erroneously decoding 1-bit at the receiver
 - Not an exact quantity (MCS, fading model)
 - ► 10⁻⁶ considered reasonable
- Packet-Error-Rate (PER)
 - $\blacktriangleright \text{ PER} = 1 (1 \text{BER})^N$
 - ► *N* is the average packet size in bits

- 802.11n/ac (beamforming) vs. 802.11b (omnidirectional)
 - Eve targets the downlink from Alice to Bob
 - Is Eve affected by n/ac PHY features?
- Predictions (numerical analysis)
 - Eve's SNR disadvantage in b vs. n/ac
 - Eve's PER disadvantage compared to Bob in n/ac
- Experiments (COTS devices)
 - Measure PER and SNR of Eve and Bob
 - Compare the results with predictions


- Path loss model
 - Parametric simulation ot wireless links (indoor, outdoor)
 - ► *d*_{BP} is the breakpoint distance
 - σ_{SF} is the shadowing std dev (log-normal)
 - s_{PL} LOS and NLOS path loss slopes
- Model B: Residential (intra-room)
 - ► *d_{BP}* = 5 m
 - *σ*_{SF} = 3, 4 dB
 - $s_{PL} = 2, 3.5$
- Model D: Office (large conference room)
 - ▶ *d_{BP}* = 10 m
 - *σ*_{SF} = 3, 5 dB
 - $s_{PL} = 2, 3.5$

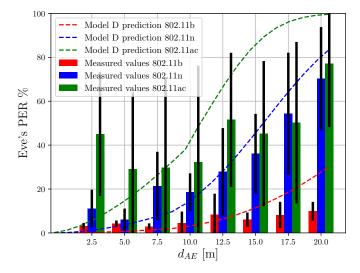
Model B (Residential) Expected PER


• PER of Eve, Bob(L=2) and Bob(L=4) in 802.11n (BPSK)

Model B (Residential) Expected PER

PER of Eve, Bob(L=2) and Bob(L=4) in 802.11n (BPSK)

Experimental Office Layout (NLOS)



- Alice, Bob, and Eve locations
 - ▶ *d*_{AB} = 2 m
 - $\vec{d}_{AE} = [2.5, 5.0, \dots, 20] \text{ m} (8 \text{ distances})$
 - ► \(\Delta d_{AE} = 2.5 \text{ m}\)
 - Constant angle and elevation
 - NLOS (exploit multipath)

Experimental Setup: Traffic and Metrics

- UDP packets from Alice to Bob (targeted by Eve)
 - Wireshark running on Alice, Eve, and Bob
 - ▶ 30 repetitions per distance (2.5 m, 5.0 m, . . . , 20 m)
- SNR measurements
 - Received Signal Strength Indication (RSSI) and noise floor
 - From radiotap headers
- PER measurements
 - From incorrect UDP checksums
 - Over the total number of packet sent

Eve's Measured PER vs. Model D (Office)

• Eve's PER is increasing among 802.11b/n/ac

- Q1: Can we leverage deployed physical layer features to secure communications?
 - Yes, 802.11n/ac PHY features disadvantage an eavesdropper
- Predicted 802.11n/ac disadvantages for Eve
 - SNR is bounded by 6-41 dB
 - PER increases to 98% when d_{AE} > 20 m
 - Eve has to be 129.5 m closer to get same performance as Bob
- Experimental results about Eve
 - PER increases significantly when d_{AE} > 15 m
 - PER is 20% higher in 802.11n than in 802.11b
 - PER is 30% higher in 802.11ac than in 802.11b

• C1: Wireless physical layer as a defense mechanism

- Q1: Can we use physical layer features to build security mechanisms? [CANS17]
- C2: Complexity and accessibility of wireless technologies
 - Q2: Can we analyze and evaluate (proprietary) wireless technologies? [NDSS19]

• C3: Security evaluations and hardening of wireless technologies

Q3: Can we harden already deployed technologies? [USEC19]

Our Wireless Security Challenges and Research Questions

- C2: Complexity and accessibility of wireless technologies
 - Q2: Can we analyze and evaluate (proprietary) wireless technologies? [NDSS19]

- Wireless technologies are complex
 - Specifications have amendments (revisions)
 - Different implementations of a specification
- · Wireless technologies are difficult to access
 - Proprietary specifications
 - Closed-source implementations
- Q2: Can we analyze and evaluate (proprietary) wireless technologies?
 - Nearby Threats: Reversing, Analyzing, and Attacking Google's 'Nearby Connections' on Android [NDSS19]

Nearby Threats: Reversing, Analyzing, and Attacking Google's 'Nearby Connections' on Android [NDSS19]

- Nearby Connections
 - API for Android and Android Things
 - In-app proximity-based services
- Implemented in the Google Play Services
 - Available across different Android versions
 - Applications use it as a shared library

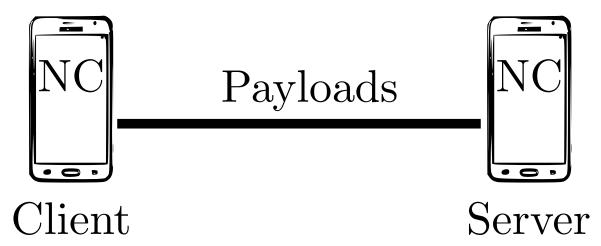
Google Nearby

Why Analyzing Nearby Connections?

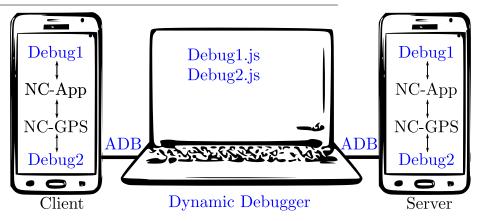
- Wide attack surface
 - ► Any Android (version ≥ 4.0) and Android Things device
 - Uses Bluetooth and Wi-Fi (even at the same time)
- Proprietary technology
 - No public specifications
 - Implementation is closed-source and obfuscated

- First (security) analysis of Nearby Connections
 - Uncovers its proprietary mechanisms and protocols
 - Based on reversing its Android implementation
- Re-implementation of Nearby Connections (REarby)
 - Exposes parameters not accessible with the official API
 - Impersonates nearby devices from any application
- Attacking Nearby Connections on Android
 - Connection manipulation and range extension attacks
 - Responsible disclosure with Google

Nearby Connections Public Information



Client


- Server
- The server advertises a service (sid) and the client discovers it
- Two connection strategies: P2P_STAR and P2P_CLUSTER

Nearby Connections Public Information 2

- · Automatic connection using Bluetooth and/or Wi-Fi
- Node exchanges encrypted payloads (peer-to-peer)

Our Dynamic Binary Instrumentation

- Workhorse: Frida, https://www.frida.re
 - Profiling of processes, e.g. NC-App, NC-GPS
 - Hook function and methods calls
 - Override parameters and return values
 - Read and write processes' memory

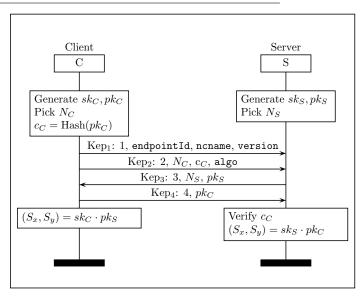
1 Discovery: Bluetooth name (BR/EDR) and BLE reports

- 1 **Discovery**: Bluetooth name (BR/EDR) and BLE reports
- 2 Connection Request: automatic over Bluetooth, not authenticated

- 1 Discovery: Bluetooth name (BR/EDR) and BLE reports
- 2 Connection Request: automatic over Bluetooth, not authenticated
- 3 Key Exchange Protocol: Establishment of a shared secret

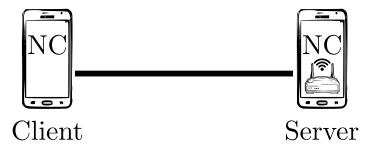
- 1 Discovery: Bluetooth name (BR/EDR) and BLE reports
- 2 Connection Request: automatic over Bluetooth, not authenticated
- 3 Key Exchange Protocol: Establishment of a shared secret
- 4 **Optional Authentication**: Based on the shared secret

- 1 Discovery: Bluetooth name (BR/EDR) and BLE reports
- 2 **Connection Request**: automatic over Bluetooth, not authenticated
- 3 Key Exchange Protocol: Establishment of a shared secret
- 4 **Optional Authentication**: Based on the shared secret
- 5 Application Layer Connection Establishment: Interactive

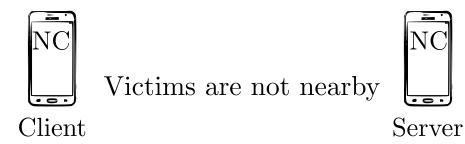

- 1 Discovery: Bluetooth name (BR/EDR) and BLE reports
- 2 **Connection Request**: automatic over Bluetooth, not authenticated
- 3 Key Exchange Protocol: Establishment of a shared secret
- 4 **Optional Authentication**: Based on the shared secret
- 5 Application Layer Connection Establishment: Interactive
- 6 Key Derivation Functions: Session, AES and HMAC keys

- 1 Discovery: Bluetooth name (BR/EDR) and BLE reports
- 2 **Connection Request**: automatic over Bluetooth, not authenticated
- 3 Key Exchange Protocol: Establishment of a shared secret
- 4 Optional Authentication: Based on the shared secret
- 5 Application Layer Connection Establishment: Interactive
- 6 Key Derivation Functions: Session, AES and HMAC keys
- 7 Optional Physical Layer Switch: Bluetooth to Wi-Fi

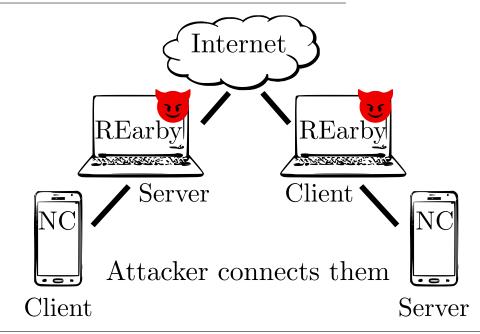
- 1 Discovery: Bluetooth name (BR/EDR) and BLE reports
- 2 **Connection Request**: automatic over Bluetooth, not authenticated
- 3 Key Exchange Protocol: Establishment of a shared secret
- 4 Optional Authentication: Based on the shared secret
- 5 Application Layer Connection Establishment: Interactive
- 6 Key Derivation Functions: Session, AES and HMAC keys
- 7 Optional Physical Layer Switch: Bluetooth to Wi-Fi
- 8 Exchange Encrypted Payloads: Proximity-based service


- 1 Discovery: Bluetooth name (BR/EDR) and BLE reports
- 2 Connection Request: automatic over Bluetooth, not authenticated
- 3 Key Exchange Protocol: Establishment of a shared secret
- 4 Optional Authentication: Based on the shared secret
- 5 Application Layer Connection Establishment: Interactive
- 6 Key Derivation Functions: Session, AES and HMAC keys
- 7 Optional Physical Layer Switch: Bluetooth to Wi-Fi
- 8 Exchange Encrypted Payloads: Proximity-based service
- 9 Disconnection: automatic after a 30 seconds timeout

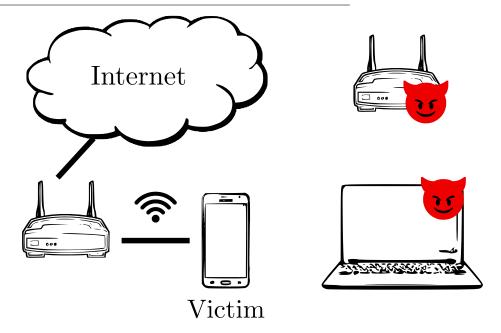
Key Exchange Protocol (KEP)

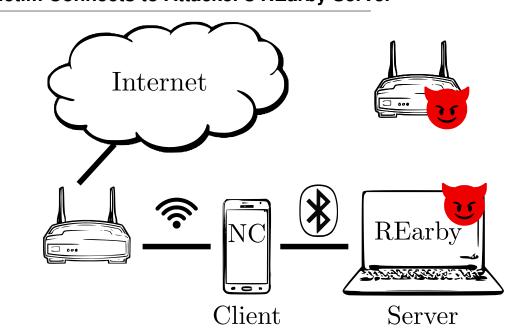

Based on ECDH, NIST P256 curve, shared secret is S_x

Optional Physical Layer Switch



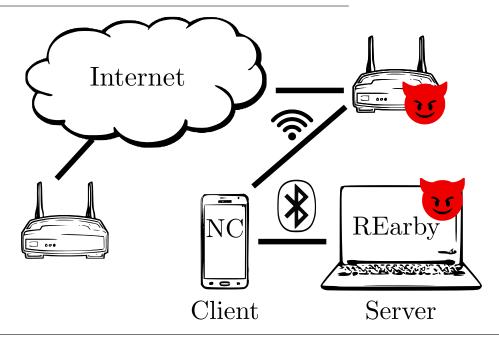
- Bluetooth to soft access point (Wi-Fi Direct, hostapd)
 - Server instructs the client over Bluetooth (e.g. ESSID, password)
 - Client contacts the server over Wi-Fi

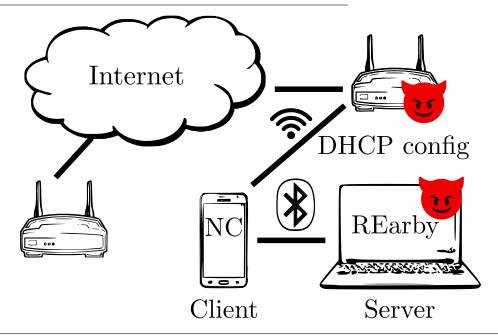

Range Extension MitM Attack

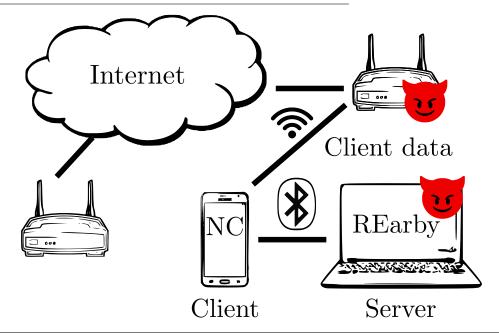


Range Extension MitM Attack

Soft Access Point Manipulation Attack




Attacker Manipulates Bluetooth to Wi-Fi Switch


Victim Connects to Attacker's Wi-Fi AP

Attacker Configures Victim's Network Interface

Attacker Eavesdrops All Wi-Fi Traffic

- Q2: Can we analyze and evaluate (proprietary) wireless technologies?
 - ▶ Yes, and they should not use security through obscurity.
- · First security analysis of Nearby Connections
 - Android and Android Things API for proximity-based services
- · Reversed its Android implementation and re-implemented it
 - REarby https://francozappa.github.io/project/rearby/
- Demonstrate attacks and proposed countermeasures
 - Range extension MitM: authenticate nodes and check proximity
 - Soft access point manipulation: authenticate nodes

Conclusion and Q&A

- CPS security contributions (Thesis Part I, Chapter 1-5)
 - C1: Evaluation of CPS (IT and OT) technologies
 - MiniCPS: A toolkit for security research on CPS networks [CPS-SPC15]
 - Legacy-Compliant Data Authentication for Industrial Control System Traffic [ACNS17]
 - C2: Cyber-physical attacks
 - Towards high-interaction virtual ICS honeypots-in-a-box [CPS-SPC16]
 - State-Aware Anomaly Detection for Industrial Control Systems [SAC18]
 - C3: CPS security education
 - Gamifying ICS Security Training and Research: Design, Implementation, and Results of S3 [CPS-SPC17]
- Wireless systems security contributions (Thesis Part II, Chapter 6-10)
 - C1: Wireless physical layer as a defense mechanism
 - Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN [CANS17]
 - C2: Complexity and accessibility of wireless technologies
 - Nearby Threats: Reversing, Analyzing, and Attacking Google's 'Nearby Connections' on Android [NDSS19]
 - C3: Security evaluations and hardening of wireless technologies
 - The KNOB is broken: Exploiting low entropy in the encryption key negotiation of Bluetooth BR/EDR [USEC19]

Thanks for your time! Questions? More at: https://francozappa.github.io

- C1: Wireless physical layer as a defense mechanism
 - Q1: Can we leverage deployed physical layer features to secure communications? [CANS17]
- C2: Complexity and accessibility of wireless technologies
 - Q2: Can we analyze and evaluate (proprietary) wireless technologies? [NDSS19]
- C3: Security evaluations and hardening of wireless technologies
 - Q3: Can we harden already deployed technologies? [USEC19]

Our Wireless Security Challenges and Research Questions

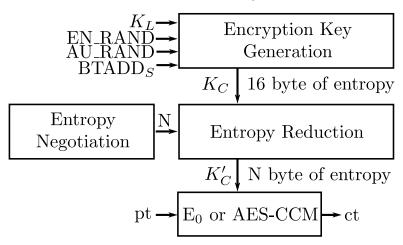
• C3: Security evaluations and hardening of wireless technologies

Q3: Can we harden already deployed technologies? [USEC19]

C3: Security evaluations and hardening of wireless technologies

- · Bluetooth is a pervasive wireless technology
 - ▶ Wide attack surface: IT, mobile, automotive, medical, and industrial
- Bluetooth security posture
 - Open specification
 - Custom security mechanisms
 - No public reference implementation
- Q3: Can we evaluate and harden already deployed technologies?
 - The KNOB is broken: Exploiting low entropy in the encryption key negotiation of Bluetooth BR/EDR [USEC19]

The KNOB is broken: Exploiting low entropy in the encryption key negotiation of Bluetooth BR/EDR [USEC19]


- Bluetooth BR/EDR (Basic Rate/Extended Data Rate)
 - P2P, master-slave
 - Better performance, yet less battery life than Bluetooth Low Energy (BLE)

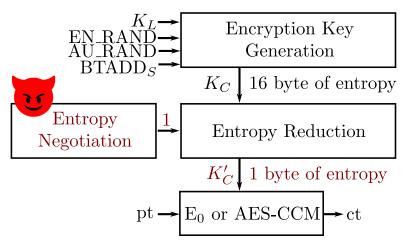
- Bluetooth BR/EDR link layer security guarantees
 - Confidentiality, integrity, and authentication
- Secure Simple Paring (SSP), since Bluetooth v2.1
 - Pairing to generate a link key (long term secret)
 - ECDH and nonce-based key authentication
 - Session keys derived from the link key (AES, HMAC)
- Secure Connections (SC), since Bluetooth v4.1
 - AES-CCM rather than E0
 - P-256 curve rather than P-192 curve

Key Negotiation of Bluetooth (KNOB)

• Paired devices share K_L and negotiate a new K'_C per connection

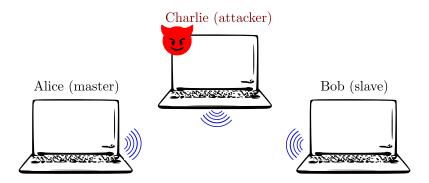
• Q: What is the smallest yet standard-compliant N?

KNOB from the Bluetooth core spec v5.0 (page 1650)

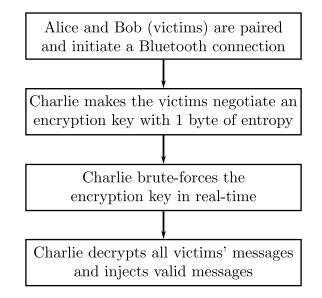

"For the encryption algorithm, **the key size may vary between 1 and 16 octets** (8-128 bits). The size of the encryption key is configurable for two reasons. The first has to do with the many different requirements imposed on cryptographic algorithms in different countries - both with respect to export regulations and official attitudes towards privacy in general. The second reason is to facilitate a future upgrade path for the security without the need of a costly redesign of the algorithms and encryption hardware; increasing the effective key size is the simplest way to combat increased computing power at the opponent side."

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_ id=421043

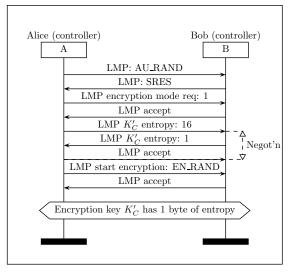
• Q: How hard is to decrease the key size (entropy) to 1 Byte?


Our Contribution: the KNOB Attack

• How hard is to adversarially set N=1 (break the KNOB)?

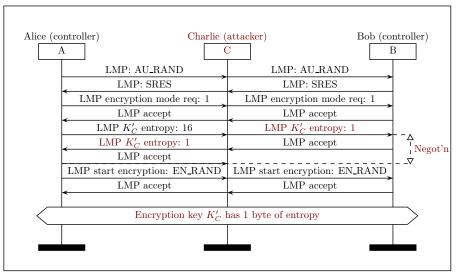

• Well, we demonstrated that the KNOB is broken

Threat Model

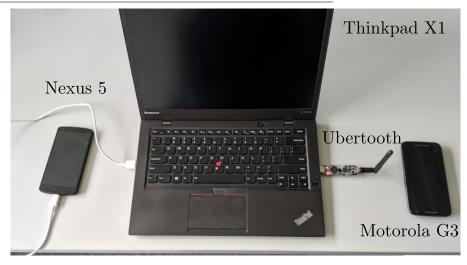

- Alice (master) establishes a secure Bluetooth connection with Bob (slave)
 - Victims already performed pairing (they share K_L)
 - Link layer is encrypted (using K'_C)
- Charlie (attacker)
 - In range with the Alice and Bob
 - Wants to eavesdrop and manipulate the victims's information

KNOB Attack Stages

Entropy Negotiation is Not Integrity Protected


• Devices negotiate N, between 1 and 16, according to their L_{min} and L_{max}

· Over the air LMP packets are not integrity protected


Adversarial Entropy Negotiation

Charlie (attacker) forces Alice and Bob to negotiate N=1

- Alice and Bob
 - Use an encryption key (K'_C) with 1 Byte of entropy
 - K'_C is one within 256 candidates
- Charlie
 - Eavesdrops the ciphertext
 - Tests the 256 K'_C candidates against the ciphertext (in parallel)
 - Use K[']_C to decrypt all packets and inject new packets

Example of a KNOB Attack Scenario

- Victims: Nexus 5 and Motorola G3 (SSP, no SC)
- Attacker: ThinkPad X1 and Ubertooth (Bluetooth sniffer)
- Attacker decrypts a file exchanged over a secure Bluetooth link (OBEX)

- The KNOB attack is at the architectural level
 - All standard compliant Bluetooth devices are (potentially) vulnerable
 - Regardless their implementations, SSP, and SC
- KNOB Attack Evaluation
 - We tested all the Bluetooth devices that we had access to

Vulnerable chips and devices (Bluetooth 5.0, 4.2)

Bluetooth chip	Device(s)	Vulnerable?
Bluetooth Version 5.0		
Snapdragon 845	Galaxy S9	\checkmark
Snapdragon 835	Pixel 2, OnePlus 5	\checkmark
Apple/USI 339S00428	MacBookPro 2018	\checkmark
Apple A1865	iPhone X	\checkmark
Bluetooth Version 4.2		
Intel 8265	ThinkPad X1 6th	\checkmark
Intel 7265	ThinkPad X1 3rd	\checkmark
Unknown	Sennheiser PXC 550	\checkmark
Apple/USI 339S00045	iPad Pro 2	\checkmark
BCM43438	RPi 3B, RPi 3B+	\checkmark
BCM43602	iMac MMQA2LL/A	\checkmark

\checkmark = Entropy of the encryption key (K'_C) reduced to 1 Byte

Vulnerable chips and devices (Bluetooth 4.1 and below)

Bluetooth chip	Device(s)	Vulnerable?
Bluetooth Version 4.1 BCM4339 (CYW4339) Snapdragon 410	Nexus5, iPhone 6 Motorola G3	\checkmark
Bluetooth Version ≤ 4.0 Snapdragon 800 Intel Centrino 6205 Chicony Unknown Broadcom Unknown Broadcom Unknown Apple W1	LG G2 ThinkPad X230 ThinkPad KT-1255 ThinkPad 41U5008 Anker A7721 AirPods	$ \begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \star \end{array} $

 \checkmark = Entropy of the encryption key (K'_C) reduced to 1 Byte

* = Entropy of the encryption key $(K_C^{\tilde{i}})$ reduced to 7 Byte

- Legacy compliant (do not require to change the specification)
 - Set N to 16 (set $L_{min} = L_{max} = 16$)
 - Check N from the host (OS) upon connection
 - Security mechanisms on top of the link layer
- Non legacy compliant
 - Secure entropy negotiation with K_L (ECDH shared secret)
 - Get rid of the entropy negotiation protocol

Conclusion

- Discovered an architectural vulnerability of Bluetooth BR/EDR
 - The entropy of any encryption key can be reduced to 1 Byte
 - All standard compliant devices are (potentially) vulnerable
- · Demonstrated the exploitability of this vulnerability
 - Key Negotiation Of Bluetooth (KNOB) attack
 - Evaluated on more than 14 chips (e.g. Intel, Broadcom, Apple, Qualcomm)
- Provided effective countermeasures (while doing disclosure)
 - Legacy and non legacy compliant
 - Today the embargo is over and the KNOB should be fixed

https://github.com/francozappa/knob

• Thanks for your time! Questions?