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Design, Implementation, and Evaluation of Secure
Cyber-Physical and Wireless Systems

• Thesis’s structure
I Part I: Cyber-physical systems security (Chapter 1-5)
I Part II: Wireless systems security (Chapter 6-10)
I TL;DR: Read sections 1.3 and 6.3

• Main collaborations
I SUTD (P. Szalachowski), University of Oxford (K. Rasmussen), and CISPA (N. O.

Tippenhauer)
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Cyber-Physical Systems (CPS)

• Interconnected devices managing a physical process
I Information technology (IT)
I Operational technology (OT)
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Cyber-Physical Systems (CPS) Security

• Securing CPS is paramount, yet challenging
I Cyber, physical, and cyber-physical attacks
I Wired and wireless connections (to the Internet)

• High impact attacks on CPS
I E.g. Stuxnet (nuclear), BlackEnergy (smart grid), TRISIS/TRITON (safety)
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CPS Security Challenges and Research Questions

• C1: Evaluation of CPS (IT and OT) technologies
I Q1: Can we build a low-cost real-time simulation environment for CPS? [CPS-SPC15]

• C2: Cyber-physical attacks
I Q2: Can we detect and mitigate cyber-physical attacks? [CPS-SPC16]

• C3: CPS security education
I Q3: Can we fill the gaps between IT and OT security professionals? [CPS-SPC17]
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MiniCPS: A toolkit for security research on CPS networks
[CPS-SPC15]

• Q1: Can we build a low-cost real-time simulation environment for CPS?

(C)yber −→ Network Emulation
(P)hysical −→ Physical Layer Simulation and API
(S)ystem −→ Simulation of Control Devices
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Towards high-interaction virtual ICS honeypots-in-a-box
[CPS-SPC16]

• Q2: Can we detect and mitigate cyber-physical attacks?
High-Interaction virtual honeypot
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Gamifying ICS Security Training and Research: Design,
Implementation, and Results of S3 [CPS-SPC17]

• Q3: Can we fill the gaps between IT and OT security professionals?

• SWaT Security Showdown (S3) contest
I ICS-centric, gamified security competition
I We run it at SUTD in 2016 and 2017
I IT and OT security professionals from academia and industry

• MiniCPS based security challenges
I Evaluate MiniCPS as an educational tool
I E.g. MitM attacks, sensor and actuator manipulations

• Main outcomes
I Conducted (novel) attacks
I Evaluated (novel) defenses
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CPS includes Wireless Communication Systems

• Wireless systems (thesis’s Part II)
I Transmission and reception of electro-magnetic (EM) signals
I Over a wireless physical layer (e.g. over the air)

• Pervasive use cases
I Mobile communications: Wi-Fi, Bluetooth, and cellular
I Localization: GPS and RFID
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Wireless Systems Security

• Wireless systems security is important, yet hard
I Wireless channel is broadcast
I Threats: eavesdropping, jamming, etc.

• Recent high impact attacks
I Wi-Fi: Key Reinstallation AttaCK (KRACK) on WPA2
I Bluetooth: BlueBorne implementation flaws on Android and Linux
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Our Wireless Security Challenges and Research Questions

• C1: Wireless physical layer as a defense mechanism
I Q1: Can we leverage deployed physical layer features to secure communications?

[CANS17]

• C2: Complexity and accessibility of wireless technologies
I Q2: Can we analyze and evaluate (proprietary) wireless technologies? [NDSS19]

• C3: Security evaluations and hardening of wireless technologies
I Q3: Can we harden already deployed technologies? [USEC19]
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C1: Wireless physical layer as a defense mechanism

• Physical layer (PHY)
I From bits to EM signals and vice versa

• Wireless PHY security
I Security guarantees from some physical layer features
I E.g. beamforming

• Q1: Can we leverage deployed physical layer features to secure communications?
I Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN [CANS17]
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Practical Evaluation of Passive COTS Eavesdropping in
802.11b/n/ac WLAN [CANS17]

• IEEE 802.11 PHY features
I 802.11b: single antenna, omnidirectional (SISO)
I 802.11n/ac: multiple antenna, beamforming (MIMO)

• Threat model
I Alice (access point) communicates with Bob (user)
I Eve (attacker) wants to eavesdrop the downlink from Alice to Bob

• Is Eve affected by 802.11n/ac PHY features compared to 802.11b?
I If yes, we should use it (together with crypto)

Daniele Antonioli Design, Implementation, and Evaluation of Secure Cyber-Physical and Wireless Systems CANS17 - Introduction 13



802.11b Downlink (SISO, omnidirectional)

 

• 802.11b
I Alice uses 1 antennas
I Eve’s eavesdropping success depends on: dAE
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802.11n/ac Downlink (MISO, beamforming)

 

• 802.11n/ac
I Alice uses L antennas to dynamically beamform towards Bob
I Bob experiences a gain but Eve does not
I Eve’s eavesdropping success depends on: dAE , dBE , and L
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Metrics

• Signal-to-Noise-Ratio (SNR)
I Power of the useful signal divided by the noise power at the receiver
I Usually expressed in dB (10 log10 SNR = SNRdB)

• Bit-Error-Rate (BER)
I Probability of erroneously decoding 1-bit at the receiver
I Not an exact quantity (MCS, fading model)
I 10−6 considered reasonable

• Packet-Error-Rate (PER)
I PER = 1− (1− BER)N

I N is the average packet size in bits
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Predictions and Experiments

• 802.11n/ac (beamforming) vs. 802.11b (omnidirectional)
I Eve targets the downlink from Alice to Bob
I Is Eve affected by n/ac PHY features?

• Predictions (numerical analysis)
I Eve’s SNR disadvantage in b vs. n/ac
I Eve’s PER disadvantage compared to Bob in n/ac

• Experiments (COTS devices)
I Measure PER and SNR of Eve and Bob
I Compare the results with predictions
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Wireless Path Loss Models

• Path loss model
I Parametric simulation ot wireless links (indoor, outdoor)
I dBP is the breakpoint distance
I σSF is the shadowing std dev (log-normal)
I sPL LOS and NLOS path loss slopes

• Model B: Residential (intra-room)
I dBP = 5 m
I σSF = 3, 4 dB
I sPL = 2, 3.5

• Model D: Office (large conference room)
I dBP = 10 m
I σSF = 3, 5 dB
I sPL = 2, 3.5
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Model B (Residential) Expected PER
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Experimental Office Layout (NLOS)

~2.5 m

• Alice, Bob, and Eve locations
I dAB = 2 m
I ~dAE = [2.5,5.0, . . . ,20] m (8 distances)
I ∆dAE = 2.5 m
I Constant angle and elevation
I NLOS (exploit multipath)
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Experimental Setup: Traffic and Metrics

• UDP packets from Alice to Bob (targeted by Eve)
I Wireshark running on Alice, Eve, and Bob
I 30 repetitions per distance (2.5 m, 5.0 m, . . . , 20 m)

• SNR measurements
I Received Signal Strength Indication (RSSI) and noise floor
I From radiotap headers

• PER measurements
I From incorrect UDP checksums
I Over the total number of packet sent
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Eve’s Measured PER vs. Model D (Office)
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Conclusions about 802.11 Eavesdropping

• Q1: Can we leverage deployed physical layer features to secure communications?
I Yes, 802.11n/ac PHY features disadvantage an eavesdropper

• Predicted 802.11n/ac disadvantages for Eve
I SNR is bounded by 6-41 dB
I PER increases to 98% when dAE > 20 m
I Eve has to be 129.5 m closer to get same performance as Bob

• Experimental results about Eve
I PER increases significantly when dAE > 15 m
I PER is 20% higher in 802.11n than in 802.11b
I PER is 30% higher in 802.11ac than in 802.11b
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Our Wireless Security Challenges and Research Questions

• C1: Wireless physical layer as a defense mechanism
I Q1: Can we use physical layer features to build security mechanisms? [CANS17]

• C2: Complexity and accessibility of wireless technologies
I Q2: Can we analyze and evaluate (proprietary) wireless technologies? [NDSS19]

• C3: Security evaluations and hardening of wireless technologies
I Q3: Can we harden already deployed technologies? [USEC19]
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C2: Complexity and accessibility of wireless technologies

• Wireless technologies are complex
I Specifications have amendments (revisions)
I Different implementations of a specification

• Wireless technologies are difficult to access
I Proprietary specifications
I Closed-source implementations

• Q2: Can we analyze and evaluate (proprietary) wireless technologies?
I Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’ on

Android [NDSS19]
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Nearby Threats: Reversing, Analyzing, and Attacking Google’s
‘Nearby Connections’ on Android [NDSS19]

• Nearby Connections
I API for Android and Android Things
I In-app proximity-based services

• Implemented in the Google Play Services
I Available across different Android versions
I Applications use it as a shared library
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Why Analyzing Nearby Connections?

• Wide attack surface
I Any Android (version ≥ 4.0) and Android Things device
I Uses Bluetooth and Wi-Fi (even at the same time)

• Proprietary technology
I No public specifications
I Implementation is closed-source and obfuscated
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Our Core Contributions

• First (security) analysis of Nearby Connections
I Uncovers its proprietary mechanisms and protocols
I Based on reversing its Android implementation

• Re-implementation of Nearby Connections (REarby)
I Exposes parameters not accessible with the official API
I Impersonates nearby devices from any application

• Attacking Nearby Connections on Android
I Connection manipulation and range extension attacks
I Responsible disclosure with Google
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Nearby Connections Public Information

• The server advertises a service (sid) and the client discovers it
• Two connection strategies: P2P_STAR and P2P_CLUSTER
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Nearby Connections Public Information 2

• Automatic connection using Bluetooth and/or Wi-Fi
• Node exchanges encrypted payloads (peer-to-peer)
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Our Dynamic Binary Instrumentation

• Workhorse: Frida, https://www.frida.re
I Profiling of processes, e.g. NC-App, NC-GPS
I Hook function and methods calls
I Override parameters and return values
I Read and write processes’ memory
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Reversed Phases of a Nearby Connection

1 Discovery: Bluetooth name (BR/EDR) and BLE reports

2 Connection Request: automatic over Bluetooth, not authenticated

3 Key Exchange Protocol: Establishment of a shared secret

4 Optional Authentication: Based on the shared secret

5 Application Layer Connection Establishment: Interactive

6 Key Derivation Functions: Session, AES and HMAC keys

7 Optional Physical Layer Switch: Bluetooth to Wi-Fi

8 Exchange Encrypted Payloads: Proximity-based service

9 Disconnection: automatic after a 30 seconds timeout
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Key Exchange Protocol (KEP)

Client

C

Server

S

Generate skC , pkC
Pick NC

cC = Hash(pkC)

Generate skS , pkS
Pick NS

Kep1: 1, endpointId, ncname, version

Kep2: 2, NC , cC , algo

Kep3: 3, NS , pkS

Kep4: 4, pkC

Verify cC
(Sx, Sy) = skS · pkC

(Sx, Sy) = skC · pkS

• Based on ECDH, NIST P256 curve, shared secret is Sx
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Optional Physical Layer Switch

• Bluetooth to soft access point (Wi-Fi Direct, hostapd)
I Server instructs the client over Bluetooth (e.g. ESSID, password)
I Client contacts the server over Wi-Fi
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Range Extension MitM Attack
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Range Extension MitM Attack
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Soft Access Point Manipulation Attack
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Victim Connects to Attacker’s REarby Server
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Attacker Manipulates Bluetooth to Wi-Fi Switch

Daniele Antonioli Design, Implementation, and Evaluation of Secure Cyber-Physical and Wireless Systems NDSS19 - Attacks 39



Victim Connects to Attacker’s Wi-Fi AP
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Attacker Configures Victim’s Network Interface
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Attacker Eavesdrops All Wi-Fi Traffic
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Conclusions about Nearby Connections

• Q2: Can we analyze and evaluate (proprietary) wireless technologies?
I Yes, and they should not use security through obscurity.

• First security analysis of Nearby Connections
I Android and Android Things API for proximity-based services

• Reversed its Android implementation and re-implemented it
I REarby https://francozappa.github.io/project/rearby/

• Demonstrate attacks and proposed countermeasures
I Range extension MitM: authenticate nodes and check proximity
I Soft access point manipulation: authenticate nodes
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Conclusion and Q&A

• CPS security contributions (Thesis Part I, Chapter 1-5)
I C1: Evaluation of CPS (IT and OT) technologies

• MiniCPS: A toolkit for security research on CPS networks [CPS-SPC15]
• Legacy-Compliant Data Authentication for Industrial Control System Traffic [ACNS17]

I C2: Cyber-physical attacks
• Towards high-interaction virtual ICS honeypots-in-a-box [CPS-SPC16]
• State-Aware Anomaly Detection for Industrial Control Systems [SAC18]

I C3: CPS security education
• Gamifying ICS Security Training and Research: Design, Implementation, and Results of S3

[CPS-SPC17]

• Wireless systems security contributions (Thesis Part II, Chapter 6-10)
I C1: Wireless physical layer as a defense mechanism

• Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN [CANS17]
I C2: Complexity and accessibility of wireless technologies

• Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’ on
Android [NDSS19]

I C3: Security evaluations and hardening of wireless technologies
• The KNOB is broken: Exploiting low entropy in the encryption key negotiation of Bluetooth

BR/EDR [USEC19]

Thanks for your time! Questions? More at: https://francozappa.github.io
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Our Wireless Security Challenges and Research Questions

• C1: Wireless physical layer as a defense mechanism
I Q1: Can we leverage deployed physical layer features to secure communications?

[CANS17]

• C2: Complexity and accessibility of wireless technologies
I Q2: Can we analyze and evaluate (proprietary) wireless technologies? [NDSS19]

• C3: Security evaluations and hardening of wireless technologies
I Q3: Can we harden already deployed technologies? [USEC19]
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C3: Security evaluations and hardening of wireless
technologies

• Bluetooth is a pervasive wireless technology
I Wide attack surface: IT, mobile, automotive, medical, and industrial

• Bluetooth security posture
I Open specification
I Custom security mechanisms
I No public reference implementation

• Q3: Can we evaluate and harden already deployed technologies?
I The KNOB is broken: Exploiting low entropy in the encryption key negotiation of

Bluetooth BR/EDR [USEC19]
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The KNOB is broken: Exploiting low entropy in the encryption
key negotiation of Bluetooth BR/EDR [USEC19]

• Bluetooth BR/EDR (Basic Rate/Extended Data Rate)
I P2P, master-slave
I Better performance, yet less battery life than Bluetooth Low Energy (BLE)
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Bluetooth BR/EDR’s Security

• Bluetooth BR/EDR link layer security guarantees
I Confidentiality, integrity, and authentication

• Secure Simple Paring (SSP), since Bluetooth v2.1
I Pairing to generate a link key (long term secret)
I ECDH and nonce-based key authentication
I Session keys derived from the link key (AES, HMAC)

• Secure Connections (SC), since Bluetooth v4.1
I AES-CCM rather than E0
I P-256 curve rather than P-192 curve
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Key Negotiation of Bluetooth (KNOB)

• Paired devices share KL and negotiate a new K ′
C per connection

• Q: What is the smallest yet standard-compliant N?
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KNOB from the Bluetooth core spec v5.0 (page 1650)

“For the encryption algorithm, the key size may vary between 1 and 16 octets
(8-128 bits). The size of the encryption key is configurable for two reasons. The
first has to do with the many different requirements imposed on cryptographic
algorithms in different countries - both with respect to export regulations and
official attitudes towards privacy in general. The second reason is to facilitate a
future upgrade path for the security without the need of a costly redesign of the
algorithms and encryption hardware; increasing the effective key size is the
simplest way to combat increased computing power at the opponent side.”

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_
id=421043

• Q: How hard is to decrease the key size (entropy) to 1 Byte?
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Our Contribution: the KNOB Attack

• How hard is to adversarially set N=1 (break the KNOB)?

• Well, we demonstrated that the KNOB is broken
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Threat Model

• Alice (master) establishes a secure Bluetooth connection with Bob (slave)
I Victims already performed pairing (they share KL)
I Link layer is encrypted (using K ′C)

• Charlie (attacker)
I In range with the Alice and Bob
I Wants to eavesdrop and manipulate the victims’s information
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KNOB Attack Stages
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Entropy Negotiation is Not Integrity Protected

• Devices negotiate N, between 1 and 16, according to their Lmin and Lmax

Alice (controller)

A

Bob (controller)

B

LMP: AU RAND

LMP: SRES

LMP encryption mode req: 1

LMP accept

Negot’n

LMP K
′

C
entropy: 16

LMP K
′

C
entropy: 1

LMP accept

LMP start encryption: EN RAND

LMP accept

Encryption key K
′

C
has 1 byte of entropy

• Over the air LMP packets are not integrity protected
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Adversarial Entropy Negotiation

• Charlie (attacker) forces Alice and Bob to negotiate N=1

Alice (controller)

A

Charlie (attacker)

C

Bob (controller)

B

LMP: AU RAND LMP: AU RAND

LMP: SRESLMP: SRES

LMP encryption mode req: 1 LMP encryption mode req: 1

LMP acceptLMP accept

Negot’n

LMP K
′

C
entropy: 16 LMP K

′

C
entropy: 1

LMP acceptLMP K
′

C
entropy: 1

LMP accept

LMP start encryption: EN RAND LMP start encryption: EN RAND

LMP acceptLMP accept

Encryption key K
′

C
has 1 byte of entropy
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Brute Forcing the Encryption Key (K ′C)

• Alice and Bob
I Use an encryption key (K ′C) with 1 Byte of entropy
I K ′C is one within 256 candidates

• Charlie
I Eavesdrops the ciphertext
I Tests the 256 K ′C candidates against the ciphertext (in parallel)
I Use K ′C to decrypt all packets and inject new packets
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Example of a KNOB Attack Scenario

• Victims: Nexus 5 and Motorola G3 (SSP, no SC)
• Attacker: ThinkPad X1 and Ubertooth (Bluetooth sniffer)
• Attacker decrypts a file exchanged over a secure Bluetooth link (OBEX)
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KNOB Attack Evaluation

• The KNOB attack is at the architectural level
I All standard compliant Bluetooth devices are (potentially) vulnerable
I Regardless their implementations, SSP, and SC

• KNOB Attack Evaluation
I We tested all the Bluetooth devices that we had access to
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Vulnerable chips and devices (Bluetooth 5.0, 4.2)

Bluetooth chip Device(s) Vulnerable?

Bluetooth Version 5.0
Snapdragon 845 Galaxy S9 X
Snapdragon 835 Pixel 2, OnePlus 5 X
Apple/USI 339S00428 MacBookPro 2018 X
Apple A1865 iPhone X X

Bluetooth Version 4.2
Intel 8265 ThinkPad X1 6th X
Intel 7265 ThinkPad X1 3rd X
Unknown Sennheiser PXC 550 X
Apple/USI 339S00045 iPad Pro 2 X
BCM43438 RPi 3B, RPi 3B+ X
BCM43602 iMac MMQA2LL/A X

X= Entropy of the encryption key (K ′
C) reduced to 1 Byte
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Vulnerable chips and devices (Bluetooth 4.1 and below)

Bluetooth chip Device(s) Vulnerable?

Bluetooth Version 4.1
BCM4339 (CYW4339) Nexus5, iPhone 6 X
Snapdragon 410 Motorola G3 X

Bluetooth Version ≤ 4.0
Snapdragon 800 LG G2 X
Intel Centrino 6205 ThinkPad X230 X
Chicony Unknown ThinkPad KT-1255 X
Broadcom Unknown ThinkPad 41U5008 X
Broadcom Unknown Anker A7721 X
Apple W1 AirPods *

X= Entropy of the encryption key (K ′
C) reduced to 1 Byte

* = Entropy of the encryption key (K ′
C) reduced to 7 Byte
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Countermeasures for the KNOB Attack

• Legacy compliant (do not require to change the specification)
I Set N to 16 (set Lmin = Lmax = 16)
I Check N from the host (OS) upon connection
I Security mechanisms on top of the link layer

• Non legacy compliant
I Secure entropy negotiation with KL (ECDH shared secret)
I Get rid of the entropy negotiation protocol
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Conclusion

• Discovered an architectural vulnerability of Bluetooth BR/EDR
I The entropy of any encryption key can be reduced to 1 Byte
I All standard compliant devices are (potentially) vulnerable

• Demonstrated the exploitability of this vulnerability
I Key Negotiation Of Bluetooth (KNOB) attack
I Evaluated on more than 14 chips (e.g. Intel, Broadcom, Apple, Qualcomm)

• Provided effective countermeasures (while doing disclosure)
I Legacy and non legacy compliant
I Today the embargo is over and the KNOB should be fixed

https://github.com/francozappa/knob

• Thanks for your time! Questions?
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