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Introduction
The privacy is a fundamental right of each person and it’s put to big test in this
technological era, thus it is important to understand how to protect our information
from being (ab)used or altered.
Random Number Generators (RNGs), are essential components for every crypto-

graphic system and application [2]. They can be used for the generation of random
session keys, signature keys and signature parameters, challenges and zero knowl-
edge proofs and nonces. Wrong and poor implementation of these modules is a risk
that cannot be accepted when we spoke about security and integrity of precious
information. In addition, RNGs can be used, not only for cryptographic application
but also for stochastic simulation, such as Monte Carlo methods, used to solve prob-
lems heuristically, because their intrinsic complexity does not permit to solve them
analytically. Consider as an example, the optimal distribution of service times in
complex multi-user system or the study of the correlated and uncorrelated variation
in analog and digital ICs.
An ideal RNG is capable of generate ideal secrets, namely aperiodic, non deter-

ministic bit sequence, thus the random bit produced are independent and uniformly
distributed over a certain range. A perfect RNG, however, is a fiction [28]. In this
work I will focus my attention on the best feasible approximation of an ideal RNG,
defined as True Random Number Generator (TRNG). This module is the
basic primitive to build of every crypto-system. It is mandatory also in the Pseudo
Random (Algorithmic) world. Their realization exploits specific non-deterministic
physical phenomena from various branch of physics.
To face this challenging problems I will show a strong mathematical model, from

which I will deduce a collection of statistical tools, like Fourier transformation,
Entropy and Hamming distance. Without these instruments it is not possible to
analyze a RNG and quantify how much randomness there is in a given bit sequence.
Remember that randomness is a relative subject.
I will explore “ad hoc” methodologies for design RNG: analog and digital solutions.

In the specific context of cryptography, one can be faced with a malicious person,
defined as an attacker who does not only has knowledge of the RNG’s design and
the possibility to analyze its outputs, but also he can try to affect or control the
RNG. So, for a designer it is not sufficient to have a theoretical abstraction of a
RNG in mind, but also its concrete realization and its possible flaws in the design
process, e.g. side-channel attack immunity, tamper resistance.
In the past, a lot of research work has been devoted to the development of good

physical random sources and a variety of design have been proposed. Less work
has been spent in the development of suitable tests and assessment criteria. Thus I
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Chapter 0 Introduction

will explore this filed and present the theoretical foundations, defined as Statistical
Hypothesis Testing (SHT) and I will introduce some test suite: NIST SP800-22,
DIEHARD, dieharder.
Finally I will propose the core of this work: the design and the implementation of

a CMOS on-chip test module. This circuit is able to perform some tests using only
some combinatorial logic, counters and comparators (full hardware implementation)
and return some results to check on-line the health of the target RNG.
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1 Random Number Generators
Foundations

1.1 Random Number Generators Classification
In cryptographic/security applications the random number generation mechanism
falls into two classes:

1. True Random Number Generators (TRNG) or Physical Random Number
Generators (PhRNG): exploit Non-Deterministic events and return aperiodic
sequences;

2. Pseudo Random Number Generators (PRNG) or Deterministic Random
Bit Generator (DRBG): exploit Deterministic events and return periodic se-
quences;

The first class of RNG is formed by True or Physical RNG. True Random Number
Generators harness random physical phenomena to generate random bits. On-chip
noise, clock jitter and stray electromagnetic field are some of the sources of ran-
domness for a TRNG. TRNG circuits are often used to periodically seed a PRNG,
generate nonces for security protocols and in data encryption/decryption. The most
commonly used TRNG circuits are based on Ring Oscillators which sample and dig-
itize on-chip jitter noise to generate random bits. Ring Oscillator based circuits
are also popular for FPGA based implementations. Noise amplifiers and Analog-
to-Digital Converters (ADC) are used to sample on-chip thermal and shot noise to
obtain random samples. Digital circuits for sampling thermal noise use metastable
elements like a pair of cross coupled inverters. Power up state of SRAM, read-refresh
collision in DRAM and Random Telegraph Noise (RTN) in Contact Resistive RAM
[12] are examples of memory-cell based TRNG circuits.
Another example of first class random number generation, not detailed in this

work, is what is called, not strictly physical, hence true RNG, and it is based on
the intersection of casual chains, remember that the combination of events of sev-
eral process which are independent of each other may behave completely randomly.
Consider, as an example, computer data as time of interrupts, hard-disk seek times
or user interactions, like mouse movement or keystroke timings. The intersection
of these data can provide a source of randomness. Modern UNIX and Windows
Operating System s have OS-level RNGs based on the timing of kernel IO events.
Unfortunately, the quality of the entropy collected depends upon the system’s con-
figuration and hardware. For example the entropy available from an embedded

3



Chapter 1 Random Number Generators Foundations

device without hard drive or keyboard, such as a smartphone, may be insufficient
for security application, so it is better to rely on, first class, True RNG.
The second class is formed by Pseudo Random Number Generator or Determinis-

tic Random Bit Generator, denoted in this work as PRNG and DRBG.1 A PRNG
uses deterministic processes, in the specific finite memory algorithms, to generate
a periodic series of output from an initial seed and a current state. Because the
output is purely a function (e.g., bijection) of the seed data, the unpredictability of
the output can never exceed the unpredictability of the seed. Given the same seed,
a PRNG will always output the same sequence of values so the possibility of retriev-
ing information about the seed through the observation of output sub-sequences and
their repeatable behavior can hardly be desirable in applications such as data secu-
rity and cryptography. It can, however, be computationally infeasible to distinguish
a well-seeded DRBG from an ideal RNG because often it is possible to extend the
period with regard to the time scales on which a piece of equipment is employed.
The substantial advantage of this class with respect to the first is the algorithmic
nature, which makes them easily embeddable in any digital circuit or system, instead
TRNG often requires dedicated hardware that is difficult to embed. It is important
to focus the attention on the seed that by definition requires true random numbers,
so even in this case a TRNG unit is required somewhere and it is fundamental for
the system.
Chronologically speaking the first two class of RNGs represented the starting point

of the design methodologies and so in a certain sense a “classic” scheme. But in
the recent years novel methodologies merges the two classes in what can be defined
as an hybrid RNG. This architecture use both components taking advantage of
the best parts of each, e.g., super-secure true random number for the seed, fast
and embeddable algorithm for hashing the outputs. In fact re-seeding a DRBG very
frequently and with fresh true random number can lead to very good performance, an
example will be showed in sec. 3.3. This novel design approach can be classified with
the term Cryptographically Secure Pseudo Random Number Generator
(CSPRNG) and by definition is a RNG capable to pass all statistical tests that
run in polynomial time asymptotically. All such polynomial time statistical tests,
called also efficient statistical tests, will be unable to distinguish a CSPRNG from
a true random source.
It is important, for the scope of this work, to define a reference RNG that is defined

as an ideal RNG. This mathematical construction is capable to generate infinitely
long sequence formed by random numbers that are uniformly (identically) distributed
in their range, for digital circuit the interval is simply[0, 1], and independent from
each other so it can produce unguessable, uncorrelated random output (for the
statistics behind that see sec. 2.5). Starting from this model it is possible to analyze
which kind of feasible architecture, during normal operation, cannot be distinguished

1Notice that, in this case the difference between the word number and the word bit does not
exist because all the applications concern with random numbers generated from digital circuits
outputs, that are bits.
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1.2 TRNG General Scheme

from a perfect RNG. This is the fundamental sentence! TRNGs will be the core of
this work, because they represent the best feasible approximation of an ideal RNG
and a fundamental primitive for all security-related application.

1.2 TRNG General Scheme
The most synthetic, high level block scheme of a True Random Number Generator
is in Fig. 1.1.

Figure 1.1: Basic high-level block scheme of TRNG.

This is a comfortable abstraction used recursively in this work.

1.2.1 Where is Randomness? Entropy Source (ES)
Design and Analysis of an Random Number Generator is based on the understanding
of randomness [28]. Firstly it is needed to find randomness, common example of
what is defined as an Entropy Source (ES) can be:

I Thermal (Johnson-Nyquist) noise: spontaneous voltage fluctuations in a (semi)
conductor in thermodynamic equilibrium, that result from the thermal agita-
tion of the electric charges (carriers) in the material of the (semi) conductor.
[23, 15];

I Schottky (Shot) noise, which describes the randomness in a current as it begins
to flows through a conductor e.g., from a Zener diode [29];

I Time between emissions of radioactive decays;

I Brownian motion [4];

I Quantum photon effect;

All these examples are physical random micro-cosmic process, defined by their na-
ture, as Non Deterministic. The word entropy has a central meaning because
quantify the amount of randomness present in a sequence, its formal definition will
be presented in sec. 2.7. This quantity can be extracted in many ways depending on
the type of ES, common examples are chaos on deterministic analog signals sec. 3.1,
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Chapter 1 Random Number Generators Foundations

power-up state of memory cells sec. 3.2, meta-stability of devices sec. 3.3 or random
clock jitter samples.
It is possible to model these random sources as a time-continuous analog signal

generators. The signals then can be digitized after uniform time intervals (e.g., using
a comparator). These samples are defined as digitized analog signal, briefly denoted
as das random numbers or as raw bits. Such generators are called True or Physical
RNGs, denoted in this work as True Random Number Generators (TRNGs) or
Physical Random Number Generators (PhRNGs) and they are capable to produce
aperiodic, uncorrelated random outputs.

1.2.2 Entropy Harvester (EH)
The Entropy Harvesting stage is the part of the circuit devoted to the extraction of
random bit. The first and most common example of EH circuit is the comparator,
that returns some constant voltage value if the input fall in a certain thresholds
interval. There are also examples in which the EH stage is embedded in the ES:

1. Chaos in a pipeline ADC circuit sec. 3.1;

2. Metastability in SRAM power-up state sec. 3.2;

1.2.3 Digital Post-Processing
Usually the das random number are algorithmically post-processed in order to re-
duce, more precisely to mask potential weakness of the ES e.g., bias. The outputs
of this stage, denoted as Digital Post-Processing (DPP) stage, are called internal
random numbers. Upon external call the same outputs are usually called external
random numbers.
There are many ways to post-process a bit sequence, the common tradeoff in digi-

tal circuit design is between area/power consumption and strength of the algorithm.
The DPP stage always increase the entropy of the system, reducing its throughput
(bit-rate) [33]. I briefly present four solutions in ascending order of complexity.

1.2.3.1 XOR Filter

The XOR function is a very common entropy extractor used also in sec. 3.1.

Table 1.1: XOR Function table of truth.

A B A∨̇B
0 0 0
0 1 1
1 0 1
1 1 0

6 Daniele Antonioli
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Outputs of two or more TRNG circuits XORed (bit wise added) to improve the
entropy of the output as shown in Fig. 1.2. Bias in one of the circuits is masked by
the other TRNG circuits.

Figure 1.2: XOR Filter.

This technique also provides tolerance against device wear out or side channel
attacks. Although the XOR function provides a simple implementation for improv-
ing the entropy of the design, it leads to overhead due to need for multiple TRNG
circuits.

1.2.3.2 von Neumann corrector

In 1951, John von Neumann presented a method for removing all 0/1 bias from a
RNG. This method, successively defined as the von Neumann corrector produces a
balanced distribution of ones and zeros. As can be seen from Tab. 1.2, the function
converts bit pairs [0,1] from the TRNG into an output 1 bit and the pairs [1,0] into
an output bit 0. The pairs of bits [0,0] and [1,1] are discarded.

Table 1.2: von Neumann corrector.

Input bit pair Output bit
0 0 discard
0 1 1
1 0 0
1 1 discard

The Von Neumann corrector is very efficient in terms of producing an equal dis-
tribution of 1s and 0s. But, since the output rate of the Von Neumann corrector is
not constant, the generated bits need to be stored, (e.g., in a shift register) before

Daniele Antonioli 7
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using for further processing. Even with very high entropy TRNG, the maximum bit
rate achievable is half the bit rate of the TRNG.

1.2.3.3 Secure Hash Algorithm (SHA)

Secure Hash Algorithms are four cryptographic functions distinguished chronolog-
ically as: SHA-0, SHA-1, SHA-2, SHA-3. A long explanation is out the scope
of this work. Basically a long bit sequence is processed by a complex non-linear
function, defined as compression function. The hashing process is repeated many
times, each round the compression function change slightly. The output produced
is called digest because it is always a reduction of the provided input, notice that
even if the complexity of the functions very high, the algorithm is still invertible
(pseudo-randomness).
SHA-1 (1995) is the most widely used hash function of the recent years. Each

round is described in Fig. 1.3.

Figure 1.3: SHA-1 round.

A B C D and E are 32-bit sequence, F is the compression function that varies
each round,�n is the left-bit rotation by n places operator, n varies each operation.
W tand Kt are respectively the expanded message word and the constant of round
t. � denotes addition modulo 232.
After 80 rounds a 160-bit digest output is produced.

AES posso anche non metterlo
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1.2 TRNG General Scheme

1.2.4 TRNG Figures of merit & Tradeoffs
As a summary for the end of this chapter, are presented in Tab. 1.3 the usual tradeoffs
for the design and testing of a TRNG circuit. Notice that, the classical metric,
namely: power, area and throughput, are not sufficient to classify a TRNG IC,
there is the need of additional variable that quantifies the security and the level of
randomness of the circuit.

Table 1.3: TRNG circuit tradeoffs.

Left Right
Area /Power Consumption Bit Entropy
ES Complexity DPP Complexity
Testability /Tamper
Resistance

Embeddability /Reusability

Mixed Circuit Fully Digital circuit
Throughput /Bandwidth
/Entropy Rate

Hardw /Softw complexity

Specification /Certification Dedicated Hardware /Cost
Technology Scaling Process Variation
ASIC Implementation FPGA implementation
(Re)Configurability Application Dependence

Daniele Antonioli 9





2 Randomness Toolbox

2.1 Thermal Noise (Johnson–Nyquist noise)
Walter Schottky first postulated the existence of thermal noise and shot
noise in 1918 but J. B. Johnson discover and measure it. This in an extract that
came from [15]:

“Ordinary electric conductors are sources of spontaneous fluctuations of
voltage which can be measured with sufficiently sensitive instruments. This
property of conductors appears to be the result of thermal agitation of the
electric charges in the material of the conductor.

The effect has been observed and measured for various conductors, in the
form of resistance units, by means of a vacuum tube amplifier terminated in a
thermocouple. It manifests itself as a part of the phenomenon which is com-
monly called tube noise. The part of the effect originating in the resistance
gives rise to a mean square voltage fluctuation V2 which is proportional to the
value R of that resistance. The ratio V2/R is independent of the nature or
shape of the conductor, being the same for resistances of metal wire, graphite,
thin metallic films, films of drawing ink, and strong or weak electrolytes. It
does, however, depend on temperature and is proportional to the absolute tem-
perature of the resistance. This dependence on temperature demonstrates that
the component of the noise which is proportional to R comes from the conduc-
tor and not from the vacuum tube...”

After Johnson’s results, H. Nyquist theoretically deduces the noise electromo-
tive force (thermal noise) from thermodynamics and statistical mechanics [23]. He
started from the point that the electromotive force due to thermal agitation in con-
ductors is a universal function of frequency, resistance and temperature and of these
variable only. Furthermore this statement is valid independently on the type of
conductor e.g., silver, lead or electrolyte.
To determine the form of this function it can be convenient to consider two ideal

conductors, each of resistance R, connected as showed in Fig. 2.1 by means of a
non-dissipative transmission line. In order to avoid radiation one conductor may be
internal to the other. The characteristic capacity C and impedance L per unit length
of the line is modeled in order to obtain R as characteristic impedance. Under these
conditions there are no reflection at either end of the line. Let the length of the line
by l and the velocity of propagation v.

11
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Figure 2.1: Resistive network thermal electromotive force.

After thermal equilibrium is established, let the absolute temperature of the sys-
tem be T . There are now, due to the generated thermal electromotive force, two
trains of energy traversing the line, one from left to right and viceversa.
At any instant after thermal equilibrium, let the line be isolated from the two

conductors by application of a short-circuit at both ends. Now there are complete
reflection at the two ends and the energy which was on the line at the time of
isolation remains trapped. It is possible to model the line as vibrating at its natural
frequency. The fundamental frequency is

ν0 = v/2l. (2.1)

and it is quantized for an integer value i = 1, 2, 3, ..., n by the relation νi = iν0.
Consider any νı̀ as a mode of vibration or as a degree of freedom of the system. Each
degree of freedom has an average constant energy associated equal to:

Ethermal = kBT. (2.2)

where kB is the Boltzmann constant. Half of Ethermal is magnetic and half is elec-
tric. The total energy of the vibrations within a generic frequency interval dν is:
(2lkBT/v) dν.
But since there is no reflection in the Fig. 2.1 configuration, this is the energy

within that frequency interval that the two conductors transferred to the line during
the time of transit l/v and the average power within that frequency interval trans-
ferred by the two conductors to the line during the same time interval is kBT dν.
Using basic formulas of circuit theory, I = E/2R P = RI2, that link current,

voltage and power of a conductor is possible to write the square-root of the thermal
electromotive force in a conductor of pure resistance R and temperature T, see Eq.
2.3:

E2
ν dν = 4RkBT dν. (2.3)

This expression can be extended for any other network build up of impedance Zν
members at temperature T:

Zν = Rν + iXν = 1/Yν .

12 Daniele Antonioli



2.1 Thermal Noise (Johnson–Nyquist noise)

E2 dν = 4RνkBT dν. (2.4)

Let Y (ω) be the transfer admittance of any network from the member in which
electromotive force is generated to the member in which the resulting current is
measured. Let Iω = 2πν and let R(ω) = Rν be the resistance of the member
in which the electromotive force is generated. The squared value of the current
measured within the interval dν is :

I2 dν = E2
ν |Y (ω)|2 dν = (2/π) kBTR(ω) |Y (ω)|2 dω.

Integrating from 0 to ∞

I2 = (2/π) kBT
∞̂

0

R(ω) |Y (ω)|2 dω. (2.5)

Eq. 2.5 is the same formula obtained in Johnson’s paper, confirming Nyquist theo-
retical proof.
Quantities such charge, number and mass of the carriers of electricity do not ap-

pear explicitly in the formula, therefore they enter indirectly because they influence
the value of Rν .
Notice that electromotive force in engineer typical language is know as one-sided

power spectral density, or voltage variance (mean square) per hertz of bandwidth
denoted as:

v̄2
n = 4kBTR∆f. (2.6)

The thermal (Johnson-Nyquist) noise in is ideal approximation is defined as white
noise for reason that will be clear in sec. 2.6.2 with its statistical description. Notice
that the noise’s color classification includes also pink, red (Brownian), purple and
gray. In addition pink noise is often defined as flicker noise or 1/f noise.
There are two theorems that can be used for thermal noise analysis in thermal

equilibrium. The first one derives from the Parseval’s theorem and states that:

Theorem 2.1. The noise mean power is equal to the integral of the Power Spectral
Density (PSD) of noise at thermal equilibrium, see Eq. 2.6, over all the frequencies.

The second one is more powerful because simplify computations in complex sys-
tems, and it is called equipartition theorem and it comes from statistical me-
chanics. It states that:

Theorem 2.2. Any energy storage elements (also called “degree of freedom”), such
as inductor or capacitor, in thermal equilibrium holds an average noise energy of kT/2.
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As an example, using the equipartition theorem, it can be easily computed the
noise mean power of an RC network without any integral. The only energy storage
element (degree of freedom) in this case is the capacitor, recalling that the mean
energy is E = 1

2V Q , and the capacitance is defined as C = Q/V , it is easy to see
that the average noise energy is:

1
2CV

2 = kT

2 . (2.7)

thus the noise mean power is:

V 2 = kT

C
. (2.8)

Notice that, for this circuit, the noise mean power does not depend on the value
of the resistance R. This result is not valid in all situation, in particular for more
complex circuit where they must be introduced parasitic capacitance that can lead
to a noticeable degradation in noise performance. A common example is Switched
Capacitors circuits that implement Track-and-Hold function used for filters, data
converters (A/D and D/A), sensor interfaces and dc-dc converters.
Noise mean power and noise Power Spectral Density (also called Power Density

Spectrum PDS) are fundamental quantities for engineering applications, their com-
putations involve statistics that helps to map randomness into a measurable set, see
sec. 2.5 for more details. In the specific, noise analysis it is a matter of hypothesis
and abstractions, it uses sampling technique as explained in sec. 2.4, lumped circuit
elements to model noise sources, Channel (Network) Transfer Functions (CTFs) to
model input-output relations over frequency and discrete-time domains to model
clocked circuits.

2.2 Fourier Transform
Definition 2.1. For continuous variable, given any integrable function f : R→ C
, can be defined a transformation F : R→ C such that

F [f(y)] = f̂(x) =
+∞ˆ
−∞

f(y)e−2πixy dy. (2.9)

when exists the inverse it has the form:

F−1
[
f̂(x)

]
= f(y) =

+∞ˆ
−∞

f̂(x)e2πixy dx. (2.10)

Definition 2.2. For discrete variable, given a function xn : x [n] with n = 0, 1, 2, ..., N−
1, can be defined its Discrete Fourier Transform (DFT) as:

F [x [n]] = X(k) =
N−1∑
n=0

x [n] e
−2πi
N

kn. (2.11)
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As before if exists the Inverse Discrete Fourier Transform (IDFT) and it has the
form:

F−1 [X(k)] = x [n] = 1
N

N−1∑
k=0

Xke
2πi
N
kn. (2.12)

For any discrete time function g [n], that comes from the sampling of a continuous
function g, sampled n times with period T , exists a precise relation between the
Fourier transform of the discrete-value samples and the Fourier transform of the
continuous sampled function:

G(ξ) = 1
T

+∞∑
k=−∞

ĝ(ξ − k

T
). (2.13)

Theorem 2.3. so the DFT of the discrete-value samples G(ξ), is equal to the periodic
repetition 1/T of the Fourier Transform of the continuous sampled function ĝ(ξ).

In both cases, the typical engineering application involves the relation between
functions of time time measured in s and their transformation in the frequency
domain, measured in s−1 = Hz.

2.3 Probability theory
All aspects that regards randomness, as TRNG, should be encoded in something
usable, so a clear mathematical model is necessary. Probability theory is an attempt
to accomplish this purpose.

Definition 2.3. Given Ω as the set of all possible event and A ⊆ Ω as a single event.
Then it is useful to define a family of subsets of Ω that satisfy certain properties,
this subset is called Σ(Ω) and it is a σ-algebra of Ω Iff

1. A ∈ Σ(Ω);

2. if A ∈ Σ(Ω) then Ā = Ω/A ∈ Σ(Ω);

3. if Aj ∈ Σ(Ω) then ⋃j Aj ∈ Σ(Ω);

a) applying De Morgan’s laws can be noticed that 3. is valid also for inter-
section operation ⋂. 1

Definition 2.4. Given Ω and one of its σ-algebra Σ(Ω), it is possible to define a
probability function Pr such that:

1A ∪B ≡ A ∩B and A ∩B ≡ A ∪B
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1. Pr(Ω) = 1;

2. if Aj ∩ Ak = Ø then Pr
(⋃

j Aj
)

= ∑
j Pr(A).

This function assumes value in the interval [01] and it is used as a fundamental
metric (measure) to model random things.

Definition 2.5. Furthermore, can be defined a particular kind of σ-algebra called
Borel σ-algebra on the set of R numbers. It is represented with Sy and satisfies
the following properties:

1. Sy = {x|x ≤ y};

2. Sy ∈ Σ(Ω);

3. Ω ∈ R.

So Sy is the smallest σ-algebra in the set of R numbers that contains all real intervals.

Definition 2.6. Borel σ-algebra can be used to define a Random Variable (RV) as
a function x : Ω→ Rn such that:

if A ∈ Σ(Ω)→ x−1(A) ∈ Σ(Ω).

From this definition is possible to develop all the classic probability theory.

Definition 2.7. Given any RV x, it can be always defined its Cumulative Distribu-
tion Function (CDF), that is a function Fx : Rn → [0, 1]

Fx(y) = Pr (X ≤ y) . (2.14)

and its Probability Distribution Function (PDF), that is a function fx : Rn → R+

fx(y) = d
dy Fx(y). (2.15)

It is also valid the theorem of Lebesgue, valid for both discrete-value and continuous-
value PDF, that states that:

Theorem 2.4. Given a continuous(discrete)-value RV x and its PDF and CDF. If you
have a step in the PDF then put a δ-function (δij-function) in the CDF.2

2In the context of signal processing, the Dirac delta function (δ) is often referred to as the unit impulse
symbol. Its discrete analog is the Kronecker delta function (δij) which is usually defined on a finite
domain and takes values 0 and 1.

16 Daniele Antonioli



2.3 Probability theory

Thus for a continuous-value RV x, and its CDF Fx. If fx exists, is a non-negative
Lebesgue-integrable function thus are valid the following relations:

Fx(y) =
ˆ y

−∞
fx(ξ) dξ.

Pr [a ≤ X ≤ b] =
ˆ b

a

fx(ξ) dξ.

ˆ
∞
fx =

ˆ
∞
PDF = 1.

and for a discrete-value RV x, if fx exists, are valid the following relations:

Fx(y) =
j∑

i=−∞
fx [i] =

j∑
i=−∞

fxi .

Pr [a ≤ X ≤ b] =
b∑
i=a

fx [i] .

∑
i

fx [i] =
∑
i

PDF = 1.

Definition 2.8. Another fundamental quantity is the expectation E, of a continu-
ous(discrete) RV x, defined as:

E [x] =
ˆ +∞

−∞
xfx(x) dx. (2.16)

E [x] =
∞∑
j

xjfxj . (2.17)

From this quantity can be extracted many statistical features of a RV, see Tab. 2.1:

Table 2.1: RV Statistical Features.

mean µ = mx = E [x]
variance σ2

x = E
[
|x−mx|2

]
= E[x2]− (E[x])2

standard deviation σx =
√

E[(x− µ)2] =
√

E[x2]− (E[x])2.

jth order central moment Mj
x =E[(x− µ)j ]

jth order non central moment mj
x =E[xj ]

jth order absolute moment µjx =E[|x| j ]

Given these quantities, there exists a theorem called Chebishev’s inequality, useful
to estimate a probability of a certain RV with unknown PDS, using only its mean
and variance:
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Theorem 2.5. Given a RV x, with finite mean µx and finite variance σ2
x, then for any

real number k > 0,

0 ≤ Pr(|x− µx| ≥ kσx) ≤
1
k2 (2.18)

or equivalently

0 ≤ Pr(|x− µx| > k) ≤ σ2
x

k2 . (2.19)

.

Definition 2.9. There exists also a Moment Generating Function (MGF) of a RV
that uses inverse Fourier transform, defined as:

ψx(ω) = F−1 [fx] (ω) = F [fx] (−ω). (2.20)

MGF has two important properties:

1. Can be expanded using Taylor series, this expansion serves to prove the Central
Limit Theorem (CLT) see sec. 2.9:

ψx(ω) =
k∑
j=0

mj
x

(2πiω)j

j! + µk+1
x

|2πω|k+1

(k + 1)! θ(ω).

2. Deriving it k times and computing its value in 0, can be obtained the corre-
spondent kthorder non central moment:

dk
dωk ψx(0) = (2πi)k mk

x.

Definition 2.10. Given two RV x0 and x1, is possible to define their covariance as:

γx0x1 = E [(x0 −mx0)∗ (x1 −mx1)] . (2.21)

The * correspond to the complex conjugation operator or conjugate transposition
of a matrix. Notice that, if x0 = x1 = x, then γxx = σ2

x. Furthermore, if γx0x1 = 0,
then the two RV are uncovariated.
Finally given two RV x0and x1,it is possible to define their joint PDF also called

joint probability distribution

fx0x1 = fx0 and fx1 . (2.22)

From this definition we can check one of the most important probability of RVs,
their independence.
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Theorem 2.6. Two or more RVs are independent if their joint PDF can be factorized
into independent single PDFs.

fx0,x1,...,xn (y0, y1, ..., yn) = fx0(y0)fx1(y1)...fxn(yn)

.

Definition 2.11. Given two RV x0 and x1, is possible to define their cross-correlation:

ρx0x1 = γx0x1

σx0σx1

. (2.23)

While the correlation of a random vector X is considered to be the correlation matrix
(matrix of correlations). If xo and x1 are two independent RVs with PDFs fx0 and
fx1 , respectively, then fx1−x0 is formally given by the cross-correlation ρx0x1 ,it is also
possible to compute the PDF of the sum of the two inverting the second RV.
There is a parallel theory of cross-correlation for signal processing application. In

this case, cross-correlation is a measure of similarity of two waveforms. This is also
known as a sliding dot product or sliding inner-product. For continuous functions,
f and g, the cross-correlation is defined as:

(f ? g)(t) =
ˆ ∞
−∞

f ∗(τ) g(t+ τ) dτ.

where f * denotes the complex conjugate of f. Similarly, for discrete functions, the
cross-correlation is defined as:

(f ? g)[n] =
∞∑

m=−∞
f ∗[m] g[n+m].

To compare these quantities see Fig. 2.2

Figure 2.2: Convolution, Cross-Correlation and Auto-correlation.
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.
The cross-correlation is similar in nature to the convolution of two functions.
Notice that if two RVs are independent, then they are also uncovariated (and also

uncorrelated), the inverse is true only for Gaussian(normal) RV, see sec. 2.6.

2.4 Quantization
Every digital system presents a quantization circuit responsible of the translation of
real-analog signal into processable-digital one. The aim of this circuit is to transform
a continuous-time function, that can assumes an infinite set of values into a discrete-
time function, that can assume only a finite set of values. This operation is not
reversible so it produces a loss of information, defined as error of quantization.
Notice that, every circuit has a saturation point, so in real application the set of
infinite values is bounded between two voltage/current values.
The mathematical model of the quantization process is a function Q : R → R

such that, defining Xj =
]
j∆− ∆

2 , j∆ + ∆
2

]
, can be obtained

Q(x) = j∆ if x ∈ Xj. (2.24)

for a certain quantization step ∆.

Figure 2.3: Input-Output relation of a quantization process Q(x), of step ∆.
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Suppose to model the input signal as a RV x, the application of Q on it produces
two additional RVs:
The RV that model the quantized value: ω = Q (x) . Its characterization is based

on the fact that, all the values x that fall in the interval Xj are associated to j∆.

fω (z) =
∞∑

j=−∞
δ (z − j∆)

ˆ
Xj

fx(y) dy

=
∞∑

j=−∞
δ (z − j∆)

[
Fx

(
j∆ + ∆

2

)
− Fx

(
j∆− ∆

2

)]
. (2.25)

The RV that model the error of quantization: e = x − ω. Its characterization is
much important with respect to Eq. 2.25, because after the quantization process,
the system conserve ω and ignores e. Thus a statistical model for e is necessary
to determine and guarantee the margins of error of the system. There are some
assumption that can be made about e:

1. e is uniformly distributed in the interval
[
−∆

2 ,
∆
2

]
;

2. two errors measured in different time intervals, defined as e1 and e2, are at
least uncorrelated and, in the best case, independent;

3. e and x are uncorrelated and, in the best case, independent.

There are theorems able to verify these conditions the Moment Generating Function
(MGF), see Eq. 2.20, of the input RV x. The first one permits to verify the uniform
distribution of the quantization error in the interval

[
−∆

2 ,
∆
2

]
(cond 1.):

Theorem 2.7. If e = x−Q(x) then, e is uniformly distributed in
[
−∆

2 ,
∆
2

]
iff

ψx

(
k

∆

)
= 0

for all k 6= 0.

This theorem can be interpreted remembering that ψx(z) = F [fx] (−ω). The
PDF of x is a real function.
To verify that two uncorrelated errors of quantization, e0 and e1, are independent

(cond 2.) it is valid

Theorem 2.8. If e0 = x0 − Q(x0) and e1 = x1 − Q(x1) are two quantization errors
uniformly distributed in

[
−∆

2 ,
∆
2

]
, then they are independent iff

ψx0,x1

(
k0

∆ ,
k1

∆

)
= 0

for each couple (k0, k1) 6= (0, 0).
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There is also a theorem for evaluate the correlation between the input RV and
the error of quantization (cond 3.):

Theorem 2.9. The input RV x and the error of quantization e, uniformly distributed
in
[
−∆

2 ,
∆
2

]
, are uncorrelated if

d
dy ψx

(
j

∆

)
= 0

for all j 6= 0.

2.5 Stochastic Process (SP)
A Stochastic Process (SP) is any process that contains some randomness and
information which a user wants to extract. It is a fundamental abstraction because
it permits to introduce the concept of time as follows. Take a SP and extract from it
a number of profiles at precise time intervals, also called realizations of the SP. Then
the SP’s realizations can be seen as a vector of RVs, namely a random vector and
each sample is a function (discrete or continuous depending on the initial hypothesis)
and can be modeled as a RV, thus all formulas introduced before are usable, such
as in Tab. 2.1. These collection of RVs permits to model a SP.
A SP can involve both continuous-time (c-t) and discrete-time (d-t) RVs. In this

work the latter will be used more often. Furthermore its realization can assume C
or R values, notice that all the theory developed for complex values can be reduced
simply for real values RVs, so it is preferred in this work because it is more general.
Remember the ideal RNG showed in sec. 1.1 ? In statistical terms it can be de-

scribed with a discrete-time stochastic process, formed by a sequence of independent
and uniformly distributed (IID) random variables, distributed in the set {0, 1}, with
probability p = 0.5. This stochastic process is very common in literature and is
known as Bernoulli process.

2.5.1 SP Characterization
Generally exists three ways to model a SP:

1. Joint PDF characterization. The first type of char is the most complete, but
requires a huge amount of data. Fixing n time instants t0 < t1 < ... < tn−1, it is
possible to get a collection of n profiles x(t0), x(t1), ..., x(tn−1) from the SP, then
find its joint PDF of order n: fx(t0)x(t1)...x(tn−1) (y0, y1,, .., yn−1). For n→∞, the
joint PDS provides any information about the SP but is evidently infeasible
in practice; it is usual to steak to second order joint PDS characterization.

2. Autocorrelation-Autocovariance function characterization. The second type
of characterization involves auto-function, that in statistical terms means to
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evaluate a RV and its evolution in time. To clarify this concept take the co-
variance between two discrete-time RVs, as showed in Eq. 2.21, x0 = x0 [0]
and x1 = x0 [1], so γx0x1 is the covariance of x0 against a time-shifted version
of itself, namely the auto-covariance of x0. With this notion in mind, a SP
can be characterized from the auto-covariance and auto-correlation functions
of its realizations in the time interval t0 < t1 < ... < tn−1:

Cx (t0, t1, ..., tn−1) = E [x∗(t0)x(t1)x∗(t2)...x(tn−1)] . (2.26)

auto-correlation is the cross-correlation of a RV with itself in time

Kx (t0, t1, ..., tn−1) = E
[(
x(t0)−mx(t0)

)∗ (
x(t1)−mx(t1)

)
...
(
x(tn−1)−mx(tn−1)

)]
.

(2.27)

As before, it is impossible the extend to infinity the order of characterization
so it is sufficient to limit the evaluation at the 2ND order, n = 2, to extract
information about the energy of the SP from the knowledge of Eq. 2.26 or Eq.
2.27 that are both positive definite functions(matrix). In the Fourier domain,
this fact translates into a real, positive power density spectrum.

3. Projections characterization. The third type of characterization is the most
powerful. Suppose to fix an interval of observation

[
−T

2 ,
T
2

]
, given a SP x

it is possible to define all of its realization as vector space v. It is now possible
to project (scalar product) the realizations on some function ϕj, obtaining the
projection ρj:ρj = 〈ϕj, x〉 . The parameter j dictates the order of aproxima-
tion. It is possible to reverse the formula ∑j ρjϕj. The set of ϕj have to be
made of orthogonal function, such that 〈ϕj, ϕk〉 = 0 for each j 6= k, and or-
thonormal functions, such that 〈ϕj, ϕk〉 = 1 for j = k, to assure that they are
linear independent functions. To obtain the maximum information with the
minimum value of j, it is sufficient that all the projections are uncovariated.

2.5.2 SP Stationarity
Another basic concept is stationarity. Imagine to model and design a system, the
prototype must work not only during the testing phase but also during operation
time, that is much and much longer than testing phase. Considering this system as
a SP is possible to use this theorem with many degree or order of stationarity:

Definition 2.12. A SP is m-order stationary, with m = 1, 2, 3, ..∞, if ∀m and
∀t0, t1, ..., tm−1, its joint PDF it is:

fx(t0)...x(tm−1) = fx(t0+∆t)...x(tm−1+∆t). (2.28)

and Eq. 2.28 is valid ∀∆t ∈ R for continuous-time SP and ∀∆t ∈ Z for discrete-time
SP.
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This means that, all the statistical features of the SP are invariant with respect
to any translation in time. Claim to reach infinite order stationarity is absurd, a
second order (m = 2) stationarity is a good tradeoff.

Definition 2.13. A SP is said to be cycle-stationary with period T if, for each
integer m and time interval t0, t1,, ..., tm−1

fx(t0)...x(tm−1) = f
x(t0+kT)...x(tm−1+kT ), (2.29)

for each integer k .

2.6 Gaussianity
2.6.1 Jointly Gaussian Vector (JGV)
The Gaussian theory it is a fundamental part security engineering because it permits
to model a lot of situations and it has a set of strong properties that simplify a lot
the work. Notice that any Gaussian RV can be completely characterized in terms
of its mean and variance.

Definition 2.14. Given a set of n real RVs that forms what is called a random
vector, x = x0, x1, ..., xn−1.
This collection of RVs is a Jointly Gaussian Vector (JGV) if:

fx(y) = 1
2πn/2det (Kx)

e−
1
2 (y−mx)tK−1

x (y−mx). (2.30)

Notice that this definition can be extended also to complex RVs x = a + ib where
a = Re {x} and b = Imm {x}, adding the following condition

Kaa = Kbb

Kab = −Kba

Eq. 2.30 is the same with transposition operator t substituted by the conjugate =
transpose operator +.
The square auto-correlation matrix of a real discrete-value JGV satisfy certain

properties:

I Kx is symmetric Kx = Kt
x. 3

I Kx is a positive semi-definite matrix

I Kx is non-singular ; so it is invertible and det (Kx) 6= 0.
3

• In case of a complex JGV the auto-correlation matrix is hermitian
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Another important Gaussian property regards the MGF, recall Eq. 2.20:

Theorem 2.10. Given a JGV x = x0, x1, ..., xn−1 and its associated MGF ψx. It valid
the following relation:

F−1 [fx] (w) = ψx(w).

Thanks to this particular theorem it is possible to say that any linear transfor-
mation that take as input something that is Gaussian returns as output something
Gaussian.

Figure 2.4: Linear transformation of a Gaussian quantity.

Given an input JGV x with mean mx and auto-covariance matrix Kxand a linear
transformation A that produces a Gaussian JGV output w; then there is a linear
relation between the mean/auto-covariance of the input and the output:

mw = Amx.

Kw = AKxAt

Given a JGV it is possible to see if it is formed by independent RVs only looking to
its Kx.

Theorem 2.11. Given a JGV x = x0, x1, ..., xn−1 , if for each couple j, k with j 6= k,
the expectation E

[(
xj −mxj

)t
(xk −mxk)

]
= 0 then x0, x1, ..., xn−1 are independent

RVs

2.6.2 Additive White Gaussian Noise SP (AWGN)
It is important to mention at least one of the most important type of discrete-value
real SP.

Definition 2.15. A SP can be defined as Gaussian Stochastic Process (GSP)
if:

p = 〈ϕ, x〉

is a Gaussian RV for each ϕ ∈ L2
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So to characterize a GSP it is sufficient to use a projection model and choose a
set of orthonormal basis ϕ and know the statistics of the projections. There are at
least three fundamental properties of a GSP:

1. Any sample x [tn] of a GSP is a Gaussian RV, and any linear combination of
a finite number of sample is a JGV.

2. A GSP is completely characterize by the mean and the auto-covariance of its
projections.

3. Any linear filtering h of an input GSP produces a GSP output.

There is a particular type of GSP calledWhite Noise GSP or simplyWhite Gaussian
Noise (WGN). It is often incorrectly assumed that Gaussian noise is necessarily white
noise, yet neither property implies the other. Gaussianity refers to the probability
distribution with respect to the value, in this context the probability of the signal
reaching an amplitude, while the term white refers to the way the signal power is
distributed over time or among frequencies. We can therefore find Gaussian white
noise, but also Poisson, Cauchy, etc. white noises. Thus, the two words "Gaussian"
and "White" are often both specified in mathematical models of systems.

Definition 2.16. A SP x is called White Gaussian Noise SP (WGN SP) if for
each ϕ ∈ L2 any projection p = 〈ϕ, x〉 is a Gaussian RV with mean mp and variance
σ2
p.

A discrete-value second order projection characterization of a WGN SP is a good
approximation of many real-world situations such has disturbance during a mea-
surement. In this case it is allowed to use the word additive because the noise can
be treated as an additive term that sums to the useful one (linear relation). Also
notice that:

E [p0p1] = N0

2 〈ϕ0, ϕ1〉 = 0. (2.31)

Kp = σ2
p0 0
0 σ2

p1

. (2.32)

So with this characterization it is impossible to linearly predict any terms because
the cross-correlation between different projections it is always 0. In fact the terms
White is used because the Power Density Spectrum (PDS) of a WGN SP, that is
simply the Fourier transform of the auto-correlation function, is flat, so there are
no dominant frequency component that carrier higher amount of energy.
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2.7 Entropy
The most important metric to analyze and test a RNG is entropy. Its definition
is taken from Information Theory field, and it is abstract and different from the
definition of entropy in thermodynamics sense. It is a real number between zero and
one, that gives a measure of how random a particular process is. There are several
way to measure it, historically the first definition is Shannon entropy that comes
from by Claude Shannon[31]:

Hi = −
n∑
i=i

pilog2 (pi) (2.33)

Hi quantify how much bits of information can be compressed in a loss-less bit
sequence, in our terms this translates in how much randomness is present in a bit
sequence. One perfect coin toss contains one bit of entropy (or one bit of information
because of no redundancy). By using a base-2 logarithm the entropy is measured
in bit. In the formulas pi is the probability of the process of being in the ith of n
possible states, or returning the ith of n possible outputs. In Fig. 2.5 there is an
example of Shannon’s entropy computation4 :

Figure 2.5: Shannon entropy computation.

To better understand and also extend the last definition is often useful talk in
term of entropy rate or entropy per symbol, that is applied to bit sequence that

4Free Shannon entropy calculator/tutorial http://www.shannonentropy.netmark.pl/
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encode a specific alphabet formed by symbols. As an example, consider a source
that produces the sequence ABABABAB... If the symbol’s length is equal to one,
the entropy rate 1 bit per character but, if the symbols are formed by two letter the
entropy rate is 0 bit per character, because the same symbol is repeating over time.
These simple example underlines how much randomness is subject to the boundary
condition.
There is also a lower bound quantity, namely min-entropy:

H∞ = minni=i (−log2 (pi)) (2.34)

that measures the probability that an attacker can guess the state with a single
guess. Notice that:

H∞ ≤ Hi (2.35)

the min-entropy of a process is always less or equal to its Shannon entropy.
As an example, in the case of a RNG that produces a k-bit binary result, e.g.

010101 for k = 6, pi is the probability that an output will equal i, where 0 ≤ i < 2k.
Thus a perfect binary RNG has pi = 2−k, so Eq. 2.33 and Eq. 2.34 are both equal to
k bits, and all possible outcomes are equally likely (IID outputs). The information
present in the output cannot, on average, be represented in a sequence shorter than
k bits, and an attacker cannot guess the output with probability greater than 2−k. A
random number generator for cryptographic applications should appear to relative
computationally-bounded adversaries to be close as possible to a perfect RNG, so for
a good analysis result a target RNG, at least in principle, shall not be distinguishable
from a perfect RNG that is an useful ideal abstraction.

2.8 Hamming Distance
The first error correction code was used in 1950 to detect errors in telephone central
offices to provide a better Quality of Service (QoS) in the American Telephone and
Telegraph Company (AT&T) and it was used also for digital computer applications
by Richard Hamming [9]. While, at that time, error detecting codes, such as 2out-
of-3 or 3out-of-7 code, and self-checking circuit were still available, error correction
had represented a big step forward in computer science.
As first hypothesis each code symbol or word is represented in the binary form, by

a sequence of 0’s and 1’s. All code used in this subsection are defined as systematic,
that are codes whose

1. Symbol length are all equal, they are formed by n = k+m binary digits where

a) n total symbol’s bit,
b) m information bits,
c) k error detection and correction bits.
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2. The position checked are independent of the information contained in the
symbol,

3. The checks are independent of each other,

4. Use Parity check bit.
Hypothesis 1. produces redundancy R in the code, defined as the ratio of total
symbol’s bit and the information bits.

R = n/m (2.36)

This serves to measure the efficiency of the code, because on one side R can lower the
effective channel capacity for sending information plus the need of extra hardware
equipment but on the other side, is impossible to detect and correct an errors without
introducing redundancy in the code.
To define an error correcting code first it is necessary to pass from an error de-

tecting one because any d error correcting code is also an d error detecting code,
obviously the inverse is not true. To check a symbol the most common method
used is the parity check. As an example consider the even(odd) parity check: take
a symbol of n bits, put m = n − 1 bits of information, and the last either a 0 or a
1 so that the symbol has an even(odd) number if 1’s. This is clearly a single error
detecting code, since any single error in a symbol would leave an odd(even) number
of bits. The redundancy of this code is:

R = n

n− 1 = 1 + 1
n− 1

Increasing n, the probability of at least one error in a symbol increase; and the risk
of a double error, which would pass undetected, also increase. Furthermore, a parity
check need not always involve all positions of the symbol but may be a check over
selected position.
To extend and control the power of error correcting and detecting code it is useful

to introduce a geometrical model, that consists in identifying the various sequences
of 0’s and 1’s, which are the symbol (word) of a code, with vertices of a unit n-
dimensional cube. The code points, each one of n bits, are labeled as x,y,z,... and
they form a subset of the set of all vertices of the cube. Thus the space is formed
by 2n points and can be introduced a (Hamming) distance D(x,y), called also as
a metric. By definition, a single error in a code point changes one coordinate, two
errors two coordinates, and in general d errors produce a difference in d coordinates.
So, coming back to the unit cube, the minimum number of edges which must be
traversed in going from x to y, represent the distance D(x,y) between the two code
points, or in other terms the number or error(s) between the two code symbols, see
Fig. 2.6.

Figure 2.6: 0100→1001 has distance 3 (red path); 0110→1110 has distance 1 (blue
path).
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This distance function satisfies the usual three conditions for a metric, namely:

1. D(x, y) = 0 if and only if x = y

2. D(x, y) = D(y, x) > 0 if x 6= y

3. D(z, y) +D(y, z) ≥ D(x, z) (triangle inequality)

To continue the geometric language, a sphere of radius r about a point x, is defined
as all points which are at a distance r from the point x. As an example consider
a code with n = 3, and four code points: 001,010,100,111. Each symbol may be
chosen as the center of a sphere of radius r = 2, and the other three symbol lies
on the sphere’s surface or in simple words the minimum distance between all code
words is two. Thus it follows that any single error will carry a code point to a
meaningless symbol. This in turn means that any single error is detectable with
this code. Additionally, if the minimum distance between code points is three, then
any single error will leave the point nearer to the correct code point than to any
other code points, and this means that any single error will be correctable. Go deep
with this theory permits to link the minimum distance of code points with code’s
features, as show in Tab. 2.2

Table 2.2: Minimum distance Dmin(x, y) of code points vs Code’s features.

Dmin(x,y) Code Features
1 Uniqueness
2 Single Error Detection
3 Single Error Correction
4 Single Error Correction + Double Error Detection
5 Double Error Correction

Etc.

All the distances between code points must equal or exceed the minimum distance
listed. Thus the problem of finding suitable codes is the same as that of finding sub-
sets of points in the space, which maintain at least the minimum distance condition.
It should be noted that, at a given minimum distance, some of the correctabil-

ity may be exchanged for more detectability; e.g., a subset of code points with
Dmin(x, y) = 5 can be used in different manners:

I double error correcting code, thus also double error correction;

I single error correction + triple error detection;

I quadruple error detection, without correction.

Two codes are said to be equivalent to each other if, by a finite number of the
following operation, one can be transformed into the other:
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1. The interchange of any two positions in the code symbols;

2. The complementing of the values in any position of the code symbols.

This definition is very useful because it permits to study a class of codes to the study
of typical members of each equivalence class. Furthermore, in terms of the geometric
representation, equivalence transformations amount to rotations (interchange) and
reflections (complementing) of the unit cube.
The last useful thing to know regards minimum redundancy and can be summa-

rized by a powerful general theorem, that is valid for systematic code, where points
means number of code symbols and dimensions means symbol’s bit length:

Theorem 2.12. To any minimum redundancy code of N points in n − 1 dimensions
and having minimum distance of 2k−1, there corresponds a minimum redundancy code
of N points in n dimensions having a minimum distance of 2k, and conversely

This theorem permits to construct min redundancy code (N is fixed) of any min-
imum distance starting from the simplest one k = 1 .
Hamming distance is used in several disciplines including information theory, cod-

ing theory, and cryptography. In this work Hamming weight analysis of bits is used
as a metric of RNG performance in sec. 4.2.

2.9 Limit Behavior of RVs
Try to find for a particular series of RVs x0, x1, ..., xn−1 that can be approximated
by RV x. This study starts from the relation of the PDFs of the series and the
PDF of the limit RV. The first approach can be with a punctual convergence for
their associated PDFs, but it is not too much. A second approach can be with
uniform convergence for their PDFs, but this is a too stringent condition. It is
needed something in between:

Definition 2.17. Given a series of functions fk I can define a weak convergence to
the function f as:

fk →w f

if for each function g
´
fkg =

´
fg.

There is a specialized Theorems for weak convergence of RVs series.

Theorem 2.13. Lyapunov. Given a series of RVs x0, x1, ..., xn−1 with PDFs fk and
CDF Fk, given a single RV x with PDF f and CDF F
fk →w f ‘ iff Fk → F. and fk →w f if ψxk → ψx. Thus xk → x.

The second is much more famous with respect to the Lyapunov theorem

Daniele Antonioli 31



Chapter 2 Randomness Toolbox

Theorem 2.14. Central Limit Theorem (CLT). Given a series R independent
RVs x0, x1, ..., xn−1 with means mxj = 0 and variance σ2

xj
. It is possible to define

Sw = ∑k−1
j=0 xj and w′ = 1

k

∑k−1
j=0 xj and w′′ = 1√

k

∑k−1
j=0 xj .

1. If, for each j, limk→∞
1
k2
∑k−1
j=0 µ

2
xj

= 0 then fw′ →w δ .

2. If, for each j, limk→∞
1

k3/2
∑k−1
j=0 µ

3
xj

= 0 and limk→∞
1
k

∑k−1
j=0 σ

2
xj

= σ2 <∞. then

fw′′ →w 1√
2πσ

e−
1
2
z2
σ2 .

So the PDF normalized sum, that is not the joint PDF of the RVs, tends to a
Gaussian PDF with known mean and variance.

Theorem 2.15. de Moivre-Laplace. From CLT can be deduced a special case stating
that: given a binomial SP (Bernoulli) of n samples where the trials are independent and
the probability of success is p and probability of insuccess q = 1−p for each. If n is very
large the SP can be asymptotically approximated by a Gaussian RV with mean equal to
np and std deviation equal to √npq.

(
n

k

)
pkqn−k ' 1√

2πnpq e
−(k−np)2/(2npq), p+ q = 1, p > 0, q > 0. (2.37)

2.10 Pearson’s Chi-Squared test (Pχ2t)
Pearson’s χ2 statistical test is the best-know of several chi-squared test, that are
statistical procedures whose results are evaluated by reference to an ideal Chi-
Squared PDF with k degrees of freedom.

Definition 2.18. Chi-Squared PDF with k degrees of freedom.

χ2(k) = 1
2 k

2 Γ(k2 )
x( k2−1)e−

x
2 . (2.38)

where Γ(n) is the gamma function5

Γ(z) =
ˆ ∞

0
t(z − 1)e−tdt. (2.39)

In Fig. 2.7 it is plotted χ2 PDFs in function of k:
5not be confused with gamma PDF. gamma PDF is a generalization of the chi-squared PDF, or
in other term chi-squared PDF is a special case of gamma PDF
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(a) Chi-squared PDFs in function of
some k degrees of freedom.

(b) Chi-squared CDFs in function of
some k degrees of freedom.

Figure 2.7: χ2 in function of some k degrees of freedom.

Notice that χ2(k) is the distribution of a sum of the squares of k independent
Gaussian RVs.6
Generally Pχ2t tests a null hypothesis (H0) on an “observed event”. In the

specific it tests whether outcome frequencies (e.g., number of logical ’0’ vs logical ’1’
in a bit sequence follow a specified distribution, also called goodness-of-fit testing.
This fact is coded in the similarity between the sampled PDF and an ideal chi-
squared PDF. The level of similarity reject or not the null hypothesis. Notice that
exists also the alternative hypothesis associated to the null one, defined as Ha.

Theorem 2.16. Pearson’s chi-squared test. Given a null hypothesis H0 and n
binomially samples to test it (goodness of fit test) it is possible to compute an observed
statistic on it:χ2

obs. If n is large enough, the comparison between χ2
obs and a ideal chi-

squared statistics χ2 with k degrees of freedom provides a measure of accuracy of H0
over n samples (P-value).

The application of this kind of test in the filed of TRNG will be extensively
explained in sec. 5.2.

6called also normal or standard RVs for their huge use in statistics
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3.1 Analog Chaotic ADC
The first TRNG proposed is a mixed non-linear circuit based on an analog ES circuit.
The implementation refers to [25, 6, 26].

3.1.1 Pipeline ADC Converter
The implementation is based on a pipeline ADC converter. The h+1 stage converter
shown in Fig. 3.1, provides a representation of an input variable vin defined in a
interval X into a l-bits numerical notation. It’s not necessary that all stages are
identical but in this example the first h stages arem-bit ADCs and they are identical,
while the last one, a n-bit ADC, has a simpler structure because it’s not necessary
the computation of its conversion error.

Figure 3.1: Basic Structure of a Pipeline ADC.

The input v(0) is sampled by the Sample/Hold (S/H) circuit of the first stage
(stage 0), then the sample is passed to a m-bit flash ADC converter that computes
a coarse m-bit representation of the input called D(0) and the analog error conver-
sion e(0). This error signal is passed to the following stage (stage 1) as input v(1)and
the same computations are performed. This process is repeated from stage 0 to stage
h and provides h + 1 bits. Observe that, apart from the first stage, which directly
provides a coarse digital version of v0, all other stages provide coarse representations
of the intermediate conversion errors and not of the whole converter input. Hence
the digital output of the various stages must be processed by some digital correction
logic that provides the digital output b(l−1)...b(0), with l ≤ h ∗m + n, that repre-
sent the conversion from the analog signal v(0). In addition, the conversion errors
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are necessarily signed quantities so that all stages in the chain must be capable of
converting signed values. Finally, note that the conversion error ei of the generic
i-th stage is always smaller than than its input vi, so it must be rescaled in order to
obtain identical stages.
The major advantage of a pipeline ADCs is that the various stages can be sep-

arated by sample and hold (S/H) blocks. This permits to synchronize the flow of
information among all the stages. A stage is thus free to start operating on the next
piece of data as soon as it has calculated its conversion error, increasing the overall
throughput of the ES. However, this also complicates digital correction logic, which
now has to be sequential (have memory).

3.1.2 Modified Single ADC Cell
Assume to take a single stage of the pipeline and to feed back the output to the
input as showed in Fig. 3.2.

Figure 3.2: Modified (feedback added) ADC cell.

Now, dimension the circuit with the following parameters: m = 11/2 bit and
X = [−1, 1] obtaining a normalized voltage input. Now it is possible to define the
A/D conversion function Q(x), see Eq. Eq. (3.1):

Q(x) =


−1, for x < −1

2
0, for − 1

2 ≤ x

1, for x ≥ 1
2 .

<
1
2 (3.1)

So the conversion is obtained by comparing v(i) with the two values ±1/2 by means
of two comparators, whose output is

D(i) = d(i,1)d(i,0) =


00, for v(i) < −1

2
01, for − 1

2 ≤ v(i) < 1
2

11, for v(i) ≥ 1
2 .

(3.2)
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Therefore the conversion error is:

e(i) = k
(
v(i) −Q(v(i))

)
= M

(
v(i)

)
.

where v(i) spans in X = [−1, 1]; then e(i) spans in [−k/2, k/2] so, to take full
advantage of this architecture, the gain of the rescaler is set equal to two: k = 2.
The generic i-th ADC stage is closed into a loop by imposing v(i) = e(i), in this way,
due to the intrinsic delay introduced by the S/H circuit, a discrete-time system is
formed and the variable v(i) represent its state, and whose evolution is regulated by

v
(i)
j+1 = M

(
v

(i)
j

)
. (3.3)

where the function M is defined as e(i) = M
(
v(i)

)
and j is the time step.

The fundamental assumption made for this kind of design is that the thermal
noise sets the initial conditions on the circuit, acting as an ES, and the quantization
process, that is not reversible, acts as an entropy harvester. So it is the extreme
sensitivity to the initial condition that lead to a long-term unpredictability and
two slightly different initial condition diverge very fast in time. Because of ADC,
an opponent cannot retrieve any kind of information observing the output of the
system. Furthermore the same circuit acts both as ES as a EH, this is a great
advantage because the harvester parasitics are included and compensated in the
circuit at design time, so an ideal maximum entropy transfer is possible and also
a less complex implementation of the DPP module i.e., XOR corrector instead of
AES block. Here you can see also its circuital CMOS implementation, in Fig. 3.3:

Figure 3.3: ADC cell Circuital Implementation.

For reasons that will be more clear in sec. 4.1, the system can be statistically
modeled with is a one-dimension discrete-time chaotic map, by the function M Eq.
Eq. (3.3).

3.1.3 Chaotic ADC Pipeline
To complete the design the entire pipeline can be closed into a loop after the h
identical stages.
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Figure 3.4: ADC h stages loop configuration.

As showed in Fig. 3.4, when the switch is in position (a) the circuit operates as a
pipeline A/D converter, and the digital correction logic provides a l-bit conversion
word B, while if the switch is in position (b) the closed loop pipeline generates a bit
pair for each stage, then a XOR battery is used as simple DPP stage sec. 1.2.3.1. So
the throughput is halved and the system each clock cycle generates a h-bit random
word R. The evolution of the system can be mathematically expressed by the
following functions:

v
(0)
k+1 = M (0)

(
v

(h−1)
k

)
v

(1)
k+1 = M (1)

(
v

(0)
k

)
...

v
(h−1)
k+1 = M (h−1)

(
v

(h−2)
k

)
. (3.4)

These equations shows that Eq. Eq. (3.4) is equivalent to h systems (Eq. Eq. (3.3))
running simultaneously. From the single cell implementation the system gain a
throughput increasing factor of h and the possibility to implement the RNG slightly
modifying a normal pipeline ADC (reusability).

3.1.4 Chaotic ADC Summary
The main advantages of this TRNG architecture are:

I Reconfigurable Device: TRNG and ADC;

I Reusability/Embeddability: easy ti modify existing ADC circuit.

I Scalable Design: ADC has historically seen many years of refinement. The
process of coding designs in re-usable forms is more advanced than for any
other complex analog subsystem reaching an high level of design automation
(CAD/EDA tools):
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I Low Cost Design: no dedicated and/or specialized hardware needed;

I ES Robustness’s: no need of too much complex DPP stage;

I Tamper resistant: a power analysis cannot leak information about the gener-
ated bits.
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3.2 Digital Metastable Power-Up SRAM
The second TRNG proposed is fully digital. The ES exploits randomness in volatile
memory circuit, and refers to a work that in principle was targeted for Radio Fre-
quency IDentification (RFID) [12] and then it was discovered and explained also the
RNG functionality [13].
The ES architecture uses volatile CMOS Static Random Access Memory (SRAM)

cells as a Fingerprint Extractor and Random Number Generator, the method is
called for convenience FERNS. In the specific this implementation uses the high
gain of metastable cross-coupled CMOS inverters as a mechanism to produce (ES)
and detect (EH) thermal noise, that is the (true) source of randomness. So this
generator is classified as TRNG. It will be proved that the power-up of SRAM reveals
a physical fingerprint of the chip and that this fingerprint can provide, under some
hypothesis discussed in detail in sec. 4.2, identification and TRNG at low hardware
cost, even in application lacking circuits dedicated to either purpose.

3.2.1 Static Random Access Memory (SRAM) Circuit
A Static Random Access Memory stores some Bytes till is power down, the systems
is composed by the repetition of the standard SRAM cell, that it is a circuit able to
store 1 bit Fig. 3.5.

Figure 3.5: SRAM cell with relevant process variation and noise shown.

.
Each bit of SRAM is a six-transistor memory cell, consisting of two cross-coupled

CMOS inverters and two access transistors. Each of the inverters drives one of the
two state nodes, labeled A and B. When the circuit is unpowered both state nodes
are discharged low (AB = 0). Each time the circuit is powered-up, this unstable
state will transition to one of the two stable states, either logic 0 (AB = 01) or
logic 1 (AB = 10); the AB = 11 state is unstable and unreachable. The tendency
to transition to one state or the other depends on process variation mismatch and
noise. The impact of common-mode process variation, such as lithography, and
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common-mode noise sources, such as supply fluctuations, are minimized because
the stabilization of each cell depends only on differences between local devices, see
sec. 4.2

3.2.2 Skews of SRAM cells
It can be convenient, for illustrative purposes, to define the skew of a cell as a
continuous quantity used to represent the power-up tendency of a cell. Skew at a
given power-up is influenced by noise, so the skew of each cell across many power-
ups is described by a PDF. There are two classes and three possible cases of skews,
see Fig. 3.6:

1. The first class is represented by that cells that with high probability (regardless
of noise), will power-up to the 0 state or 1 state. They can be defined as 0-
skewed or 1-skewed cells, see Fig. 3.6(a).

2. The second class is represented by those cells who does not have a strong
tendency toward either states. They can be defined as neutral-skewed cell, see
Fig. 3.6(b).

Figure 3.6: (a) Tendencies of a 1-skewed cell. (b) Tendencies of a neutral-skewed
cell.

It’s important to underline that a neutral-skewed cell does not necessarily consist
of perfectly matched devices, but instead has some unknowable combination of vari-
ations that are approximately offsetting when power-up under nominal conditions.
This distinction is significant as it indicates that such a cell may not remain neutral
across all operating conditions. If a cell is strongly 0-skewed or 1-skewed, the minor
influence of noise is insufficient to sway power-up state; such cell provide identifica-
tion. If a cell is neutral-skewed, the influence of noise can determine its power-up
state; such cells provide randomness.
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3.2.3 FERNS method: SRAM fingerprints
Given an SRAM array, the power-up state generated by its constituent cells is de-
fined as a physical fingerprint of that array. Some of the cells in the array are
neutral-skewed, so they are unreliable across power-up trials because they add ran-
domness to the physical fingerprint, but other cells are 0-skewed or 1-skewed acting
as reliable identifying features of a fingerprint. Remember also that cells skew is not
correlated to the same bits on different chips.
A latent fingerprint is an SRAM fingerprint produced at a single power-up.

With l(i) denoting the state of a single SRAM cell at power-up i, an N -bit latent
fingerprint is simply the collective state of a specified set of N cells at power up i:

LC = {l0(i), l1(i), ..., lN(i)} . (3.5)

As a latent fingerprint is sensitive to noise, and some bit will not power-up the their
most probable state, the same set of SRAM cells can produce many different latent
fingerprint.
A known fingerprint is an intentional estimation of the state that a given set of

SRAM cells is most likely to generate at power-up and this estimation is used as the
known identity of a chip. The most likely power-up state of each cell is determined
by averaging across an odd number or trials

p = avg (l(i)) , ∀i. (3.6)

and rounding to a binary value k

k =

0 if p < 0.5
1 if p > 0.5

. (3.7)

Averaging over multiple power-ups reduces the impact of the noise, making a known
fingerprint more representative of the SRAM cells that generate it than a latent
fingerprint from the same cells:

KC = {k0, k1, ..., kN} . (3.8)

The difference between latent and known fingerprints imply their usage in the
FERNS method of identification and random number generation. Identification is
enabled by the similarity between known and latent fingerprints when both are gen-
erated by the same chip, compared to the lack of similarity between those generated
by different chips. TRNG is possible because the minor differences between latent
fingerprints generated by the same chip cause large latent fingerprint to be effectively
unique.

3.2.4 TRNG in SRAM
In the classic metastable realization, because the metastable point is not static in
time, some calibration circuit is used for dynamic control and time synchroniza-
tion. This leads to the guaranty that the bits produced are determined “only" by
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thermal noise, but the drawback of having additional circuitry provides some ex-
tra area/power consumption, that is a very strict requirements in the RFID design
(ultra-low power).
FERNS is a sort of “imprecise” version of the classical metastable design because

it uses massive redundancy that compensates the imprecision and randomness is
scattered throughout the SRAM. So no feedback or control logic is required, because
there is no need to precisely bias a single cross-coupled cell to perfect metastability.
Instead, FERNS relies on the large number of cells to ensure that some cells will be
influenced by noise when the chip is powered-up, without giving concern to which
cells are generating randomness because different conditions of power-up lead to
different random cell. Fig. 3.7

Figure 3.7: Shaded dark SRAM cells are those used for RNG, they present unpre-
dictable power-up state.

The privacy amplification (DPP) is performed by hashing a 512-byte fingerprint
into a digest of 128-bits sec. 1.2.3.3, using the PH universal hash function [35], with
each block of message and key comprised of the power-up state of 64-bits of SRAM:

PHK(M) =
16∑
i=i

(m2i−1 + k2i−1) (m2i + k2i) . (3.9)

M = (m1, ...,m32) K = (k1, ..., k32) . (3.10)

mi, ki ∈ GF (2). (3.11)
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PH is designed for low gate count and low-power hardware implementation (only
557 cells needed), with all operations performed over GF(2), so that addition and
multiplication reduce to a series of shift and XOR operations.
It is important to notice that this kind of TRNG provides random bits and the

physical fingerprints only during power-up state, that is in contrast against the
unbounded entropy generation potential of other kinds of TRNG. For this reason,
the FERNS method is best suited for application that are intermittently powered
and do not require large quantities of random number such as contact-less credit
cards and peacemakers.

3.2.5 Metastable SRAM Summary
The main advantages of this TRNG architecture are:
I Area/Power consumption: imprecision of metastable point compensated by

the redundancy of SRAM cells;

I Low Cost Design: no control logic and feedback circuit needed;

I Reconfigurable Device: TRNG and RFID;

I Resiliency against external influence: random bit source are not bounded to a
specific portion of the chip;

I Embeddability/Reusablility Design: easy use existing SRAM implementation.

3.3 Intel® Ivy Bridge Core™ Bull Mountain DRNG
The first Intel RNG, patented in 1998-2000 [10, 11], was well studied when the
company introduced Firmware-Hub chip-set component. This is a ring-oscillator
based analog design where intrinsic thermal noise was taken, amplified, and used to
pilot a free running oscillator, for further details see the white paper prepared for
Intel Corporation by Cryptography Research, Inc. (CRI) [16].

3.3.1 Intel Bull Mountain DRNG
The 3rd Intel Core family processor @22nm, code-named Ivy Bridge, presents an
hardware dedicated module Digital Random Number Generator (DRNG) aka Bull
Mountain [20]. This module is capable to communicate with all the cores of the
chip with a new atomic instruction RDRAND accessible by direct call from the
Operating System or specific application.
The high level schematics in Fig. 3.8 contains the typical macro-blocks of a TRNG.

The first block produces (ES) and digitizes (EH) random bit using an asynchronous
production pipeline. The second block (DPP) presents a synchronous conditioning
part and a Deterministic Random Bit Generator (DRBG). The system synthetically
operates as follows:
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Figure 3.8: Block Diagram of the Intel RNG.

1. The ES, that is a self-clocking circuit, operates asynchronously and generates
random bits at a high rate (about 3 GHz);

2. Random bit generated by the ES are combined, sampled by the synchronous
logic, and grouped into 256-bit blocks in a shift register;

3. Basic statistical test are performed by the so called Online Health Test (OHT)
unit on each 256-bit block to check for potential failure mode of the ES;

4. The 256-bit block are then passed to the so called Online Self-Tested Entropy
(OSTE) queue and then they are cryptographically processed into a 256-bit
Conditioned Entropy Pool (CEP) buffer by the conditioning logic;

5. The CE pool is used to reseed the DRBG that generates the random output
bit.

3.3.2 ES and Health and Swellness Tests

The ES is a dedicated self-oscillating metastable circuit, with feedback and control
logic in contrast with the “imprecise" metastable solution proposed in sec. 3.2.
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Figure 3.9: Entropy Source of the Intel RNG.

The circuit, showed in Fig. 3.9, it is a dual differential (jamb) latch formed by two
cross-coupled inverters, the nodes A and B. The circuit is self-clocking and once it
is started, enters in a metastable state. Then the ES resolves to one of the possible
two states, according to thermal noise randomness, producing in output a random
bit. The settling of the circuit is biased by the differential in the charges on the
capacitors “A caps” and “B caps”. The calibration process is based on how the latch
resolves: namely a fix amount of charge is drained from one capacitor and added to
the other with respect to the last output. So the feedback logic is designed to seek
out the metastability, trying to leave the latch oscillating around the metastable
region, using the last output as a control signal to determine the charge changes to
the capacitors. At normal Process-Voltage-Temperature (PVT) conditions, the ES
works as a digital noise sensor @ 3 GHz with a throughput of 2.5-3 Gbps.
Unlike the design proposed in [16], this RNG provides two option after the ES’s

random bits generation:

1. Accumulate samples coming from ES output in single-bit buffers using a XOR
circuits before the under-sampling by the synchronous region. So at each clock
cycle of the asynch region, the bits stored in the buffers are bit-wise summed
(XORed) with the next bits coming from the ES, providing a sort of pre-DPP.
The buffer is then sampled by the synchronous logic;

2. Overwrite the buffer with each new ES output. In this case some output bits
are cannot be used.1

1Future versions of the RNG will use a different synchronization logic, the ES output will be
deserialized, and then sampled in parallel into synchronous region, thereby preserving all the
ES samples for post-processing.
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The data sampled into the synch region is passed serially to the OHT unit that
performs the so called “Health & Swellness Tests”. It evaluates the health of each
256-bit sample using an heuristic law choosen by Intel. This on-line testing approach
is not exhaustive from a statistical testing point of view, details are in Eq. (chapter 5).
It simply counts how many times each of the six different bit patterns appears in
a 256-bit sample. The sample is considered healthy iff the number of times each
pattern appears, denoted with n, falls within certain bounds; see Tab. 3.1.

Table 3.1: Health Bounds for 256-bit samples.

Bit Pattern Bounds per 256-bit sample
1 109 < n < 165
01 46 < n < 84
010 8 < n < 58
0110 2 < n < 35
101 8 < n < 58
1001 2 < n < 35

These bounds are chosen empirically and the probability α of a false positive
(probability that a random sample from a uniform distribution fails) is about 1%.
It is important to stress that the OHT unit is not intended as a measure of entropy,
but its task is to check if the ES is badly broken, e.g., it provides continuously simple
repeating patterns, such as all zeros.
The OHT unit track also the health status of the most recent 256 samples, (each

sample is 256-bit). The ES is considered to be swell iff at least 128 of the most
recent 256 (256-bit) samples are healthy. The on-line tested series of bits fills the
first 256-bit OSTE buffer, when it is full all bits are shifted in parallel to the second
OSTE buffer and then passed to the DRBG subsystem.

3.3.3 DRBG: AES CBC-MAC
The DRBG accumulates all the samples, even those not healthy, into a so called
“Conditioned Entropy Pool” (CEP) buffer, defined also as CE[255 : 0]. The CEP
buffer can store 256 random bit and it is used to reseed the DRBG. For security
reason, this buffer is formed by two independent parts: the lower and upper parts
and these two sub-buffers are updated sequentially and independently.
CE[127 : 0] First the lower half of the CEP buffer is updated by processing the

current 256 bits in OSTE with a AES CBC-MAC algorithm [7], using 128-bit non-
secret fixed key K’ that is identical in all chip. Below is showed the pseudo-code:

Algorithm 3.1 CE[127 : 0] Updating process.
Temp[127:0]=AES(K’,CE[127:0]);
Temp[127:0]=AES(K’,OSTE[127:0] XOR Temp[127:0]);
CE[127:0]=AES(K’,OSTE[255:128] XOR Temp).
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This process is repeated, with new data in the OSTE buffer each time, if the
OSTE buffer in not healthy or if the ES is not in a swell state.
CE[255 : 128] Then, the upper half of the CEP buffer is updated using the same

process, with the same pseudo-code and same loop criterion and always using fresh
value from OSTE buffer.
Each update process is designed for fully randomize half of the CEP, even if the

OSTE bits are partially random. The complete CEP buffer updating process is
showed in Fig. 3.10.

Figure 3.10: Left side: CE[127 : 0] updating process. Right side: CE[255 : 128]
updating process.

CEP bits are then used in the reseeding process, the lower half CE[127 : 0] are
used for the DRBG AES key K[127 : 0], that is different from the key K’ used in the
conditioning process in Fig. 3.10. The upper half CE[255 : 128] is used for the DRBG
counter V[127 : 0]. Below is showed the pseudo-code of the reseeding process:

Algorithm 3.2 DRBG Reseeding process.
\\ K is the DRBG key, V is the 128-bit counter and C the
\\ number of outputs produced since the last reseeding
\\ all three quantities are initialized to zero at reset
V[15:0]=(V[15:0]+1)mod 65536;
Temp=AES(K,V);
V[15:0]=(V[15:0]+1)mod 65536;
V=CE[255:128] XOR AES(K,V);
K=CE[127:0] XOR Temp;
C=0;

Then the random data are generated using the counter mode CTR_DRBG con-
struction, with AES-128 as the block cipher. First, it fills four 128-bit output buffers
with data, and then it generates additional outputs as needed. Below is showed the
generation process:
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Algorithm 3.3 Random bit generation process.
V[15:0]=(V[15:0]+1)mod 65536;
C=C+1;
Output=AES(K,V);
If(update needed) {
V[15:0]=(V[15:0]+1)mod 65536;
Temp=AES(K,V);
V[15:0]=(V[15:0]+1)mod 65536;
V=AES(K,V);
K=Temp;

}

DRBG requires new 256-bits seed after at least 512 output samples of 128-bits
(a total of 65536 bits), but under normal operation it will reseed more frequently.
Intel’s simulations suggest that as long as the ES is healthy, the generator will
reseed within 22 output samples of 128-bit even under heavy load and under light
or moderate load, it will reseed before every 128-bit output. Regarding standards,
the DRBG reseeds much more often than NIST SP 800-90A [3] requires.

3.3.4 BIST and Operating Modes
Upon reset, the DRBG first performs a Built-In-Self-Test (BIST) to verify that the
system works properly and to initialize the DRBG. BIST is conducted in two phases:

Phase 1 ES is disconnected and a Linear Feedback Shift Register (LFSR) generates
a deterministic sequence of bits to test the OHT unit and DRBG circuit. A 32-
bit Cyclic Redundancy Check (CRC) is computed on the output of the DRBG
and compared against an hardwired expected value.

Phase 2 ES is reconnected and used to generate 256 samples of 256-bits. The
sample are used to condition the 256-bit CEP buffer. As before, first the lower
half CE[127 : 0] is conditioned till 128 healthy samples have been processed.
At this point the ES is considered to be swell and CE[127 : 0] is marked as
available. The upper half CE[255 : 128]is then conditioned, and is marked as
available as soon as one sample has been processed while the ES is swell. Once
that both half of the CEP buffer are filled, the DRBG can be reseeded so key
value (K) and counter value (C) are initialized. Finally four 128-bit samples
fill the output buffer.

The RNG must pass both phases of BIST to be considered working correctly. If
not the RNG will produce no data and the dedicated instruction to access to fresh
random data (RDRAND) will return all zeros and clear the carry flag, indicating
that there is a problem.
Instead after the end of a successful BIST, the RNG is ready for normal opera-

tion, debug and test port are disabled and the RNG operates autonomously. Each
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RDRAND call to the RNG returns 64-bits from the output buffer, which is refilled
as necessary by the RNG, and a carry flag equal to 1 to indicate good status. Users
should check the carry flag after each RDRAND call. Intel claims that even un-
der heavy load @ 800 MHz, the RNG can deliver 800 MBytes/sec post-processed
random data.
The Intel RNG supports eight different operational modes natively, such as debug

and test modes, however most of them are disabled on production parts. In addition
to operational modes, the RNG supports also a FIPS mode, which can be enabled
and disabled independently of the operational modes. FIPS mode, that refers to
Federal Information Processing Standard, sets additional restrictions on how the
RNG operates and is intended to facilitate FIPS-140 certification [24]. This
section and the consequent analysis in sec. 4.3 is only concerned with the behavior
of the system in normal mode.

3.3.5 Intel Bull Mountain Summary
The main features of this TRNG architecture are:

I Throughput/Bandwidth/Entropy Rate: 800 MB/s;

I Hybrid design: try to merge TRNG and PRNG advantages;

I Specification/Certification: CSPRNG, FIPS-140;

I Security Level: hardware dedicated module;

I Granularity: accessible at all system levels.

3.4 Two Open Source TRNG

3.4.1 HotBits
There are at least two interesting examples of free TRNG in the web. The first
one is called HotBits generator (third-generation).2 It uses a commercial Geiger-
Müller detector, designed for attachment to a computer’s serial port, illuminated
by a 5 microcurie Cæsium-137 check source. It is an internet resource that brings
genuine random numbers, generated by a process that basically is governed by the
inherent uncertainty in the quantum mechanical laws of nature. It is possible to use
these random bits directly from a computer, that acts as an interface from the ES.
The random HotBits are generated by timing successive pairs of radioactive decays

2http://www.fourmilab.ch/hotbits/
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detected by a Geiger-Müller tube. Directly from the Web you can order up your
serving of HotBits by filling out a request form specifying how many random bytes
you want and in which format you’d like them delivered. The data-rate is modest
(about 100 Bytes/s) but is free and can be used as seed for some PRNG.

3.4.2 LavaRnd™
The second example is LavaRnd™ a cryptographically sound random number gen-
erator. 3At its heart, it uses a chaotic source to power the generation of very high
quality random numbers. Anyone can have their own LavaRnd because its source
code is open and related algorithms have been released into the public domain. The
reference implementation uses low cost consumer parts. LavaRnd turns real world
physical chaotic events into random numbers in 3 stages. Firstly a digital snapshot
of a physical chaotic process is obtained. Any chaotic source that is sensitive to
measurement errors can be used. The digital snapshot containing both structured
data and chaotic noise is run through a Digital Blender Algorithm. The combination
of n different SHA-1 cryptographic hash operations running in parallel, (discussed in
sec. 1.2.3.3) and n different xor-rotate and fold operations on data containing some
chaotic noise destroys the structured data portion of the digital snapshot and pro-
duces uniformly distributed random data. The uniformly distributed random data
is collected into a pool and used only once to produce random values in the form
required by the application.

3.5 PRNG

3.5.1 Wolfram’s Rule 30
The genius S. Wolfram, who had invented Wolfram Alpha, Mathematica and
New Kind of Science (NKS) introduces in 1983 a particular type of one-dimensional
Cellular Automata (CA) called Rule 30 [34], that can be used as a PRNG. In fact
Rule 30 is used as a deterministic random number generator in Mathematica. Notice
that this section has an illustrative purpose only, all the theory behind this is out of
the scope of this work. CA were introduced by von Neumann and Ulam, under
the name of cellular spaces with the purpose of modeling biological self-reproduction
systems.

Definition 3.1. Cellular Automata (CA). Mathematical idealizations of phys-
ical systems in which space and time are discrete, and physical quantities take on

3http://www.lavarnd.org/
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a finite set of discrete values. It is a completely deterministic system because CA
discrete-time evolution of each cell value at time step t, is dictated by the values of
the variables at sites in the “neighborhood” on the time step t− 1. Thus there is a
precise set of local rules that updates synchronously every cell.

Theorem 3.1. Any physical system satisfying differential equation may be approxi-
mated as a cellular automation by introducing finite differences and discrete variables.

It is sufficient to consider one-dimensional CA, with two possible values of the
variables at each state (logical 0s and logical 1s) and in which the neighborhood of
a given state is simply the site itself and the sites immediately adjacent to it on the
left and on the right. This kind of CA are called elementary. These kind of CA
are classified in terms of rules, because it is possible to describe each one by 23 = 8
binary digit and/or a decimal number btw 0 and 255, e.g. Rule 30 equals to rule
00011110.
The rules must be reflection symmetric, so that 100 and 001 yields to identical

values and all the rules that ends with 0 in the binary representation are forbidden.
Thus the set of possible rules reduces to 32 legal CA in the form:

α1α2α3α4α2α5α40. (3.12)

Some elementary CA rules exhibit the important simplifying feature of additive
superposition or additivity property. Evolution according to such rules satisfies the
superposition principle:

s0 = t0 ⊕ u0 ⇐⇒ sn = tn ⊕ un. (3.13)

Only rules 0, 90, 150 and 204 are of this form, where the first and the latter are
trivial rules.There are also some elementary CA rules that are peripheral, in the
sense that the value of a particular site depends on the values of its two neighbors
at the previous time step, but not on its own previous state. Rules 0, 90, 160 and
250 exhibit this property.A configuration may be considered disordered or random, if
values at different sites are statistically uncorrelated and thus behave as independent
RVs. Such configurations represents a discrete form of white noise.

Definition 3.2. Rule 30. Chaotic and aperiodic configuration that can be seen as
a Boolean function of the sites within the neighborhood, defined as

x(n+ 1, i) = x(n, i− 1)⊕ [x(n, i) · x(n, i+ 1)] . (3.14)

where n indicates the discrete time step and i the cell position (central, left, right).

The rule set which governs the next state is showed in Tab. 3.2:
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Table 3.2: Rule 30: sets of rules.

current pattern 111 110 101 100 011 010 001 000
new state for
central cell 0 0 0 1 1 1 1 0

If the initial state is 1 (black color), you can notice the evolution of the system
after some iteration in Fig. 3.11. The vertical axis represents time and any horizontal
cross-section represent the state of the system at a given time. You can notice that
the left and the right part of the triangle presents periodic pattern but the central
column can be used as PRNG .

Figure 3.11: Rule 30 iteration.

As the RNG presented in sec. 3.1, Rule 30 displays sensitive dependence on initial
conditions.
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4.1 Analog Markov Chaotic sources and Pipeline
ADCs

The first TRNG proposed is a mixed non-linear circuit based on an analog ES circuit.
The analysis refers to the implementation proposed in [25, 6, 26].

4.1.1 Discrete-Time Chaotic Model
In general, a chaotic system is defined as a dynamical, linear or non linear element
that can exhibit non-classical behaviors including very irregular, aperiodic, noise-
like trajectories, and an extreme sensitivity to initial conditions, which can make
two identical systems apparently starting at identical initial conditions, end up with
totally different output. Notice that, the outputs of a chaotic source are generally
unevenly distributed and always correlated because of the deterministic model re-
sponsible of their generation. Hence it’s not possible to use them directly. Some
signal processing is required to digitize, de-correlate and balancing the sequence
like in all other kind of designs. Using some compressive DPP algorithms is pos-
sible, in principle, to obtain IID sequence. So a chaos-based RNG is no different
from a physical RNG and suffers the same liabilities, such as the need for complex
signal processing, possibly low output rates and, often, no formal guarantee that
completely uncorrelated bits are produced in short term.
As showed in sec. 3.1, the system initial condition are set by intrinsic thermal

noise, that acts as an ES and the quantization process act as a EHC and can
be modeled as a discrete-time and chaotic. The word chaos encloses the main
assumption of this approach: micro-cosmic processes employed in physical-RNG,
like this one, can be (at least) in principle be expressed deterministically and that
it is their extreme complexity and sensitivity to initial conditions to make them
unpredictable to the coarse observer. Under these premises, rather than exploiting
“natural” phenomena e.g. thermal noise model, that are well known but hardly
controllable and mathematically unmanageable, it would be much better to rely on
artificial ones that derive unpredictability from complexity. Discrete-time chaotic
models exists and they extensively understood so their suitability for RNGs can be
analytically and not just heuristically proven, but it’s out of the scope of this thesis.
Intuitively speaking, the uncertainty due to the noise superimposed on the state

of the circuit, will trigger the sensitive dependence on initial conditions resulting
in a long term unpredictability. The non-reversible quantization (analog to digital)
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process does not allow us to retrieve precise information on the actual evolution
of the system from the observation of the output (quantized values). If one knows
the model of the chaotic system, then he might look for an informed DPP algo-
rithm. Even better, dealing with an “artificial” chaotic systems, one can think of
co-designing the chaotic model and the post-processing algorithm to get the best
possible features under some metric e.g., the output bit-rate. Clearly, all this re-
quires specific mathematical tools to deal with chaos and its properties. As can be
seen above, if one sufficiently restricts the range of chaotic systems being considered,
many tools become available. In the specific, limiting the analysis to a very precise
class of non linear models, represented by the iteration of so called Piece-Wise
Affine Markov (PWAM) maps. The underlying idea stems from the realization
that chaotic systems enjoy a mixed deterministic/stochastic nature and from the
consequent adoption of statistical methodologies for their analysis [30].

4.1.2 Markov Chain characterization
A typical case of chaotic map is shown in Eq. (Fig. 4.1).

Figure 4.1: (A) Example of chaotic map. (B) Typical output trajectory.

Plot A shows a chaotic map, where

M(x) =


3x+ 2, for x < −1

2
x+ 1, for − 1

2 ≤ x < 0
−2x+ 1, elsewhere.

(4.1)

and plot B a typical trajectory in time. As anticipated, ifM is chaotic, changing the
initial condition x0 even by extremely small quantity leads to a completely different
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trajectory, which progressively (and exponentially) increases its distance from the
former, as time step n increases. The classical tools of system theory, which are
generally based on the observation of system trajectories over time, are insufficient
to get typical behaviors and general system properties; so it’s necessary to introduce
statistical tools. The intuitive idea is to pretend to be observing a huge number of
trajectories at the same time. Suppose that a very large number of (different) initial
conditions is generated, following a given PDF ρ0 in [−1, 1]. When M is applied,
an equally large number of x1is obtained. These will distribute in [−1, 1] according
to a certain density ρ1. If M is known, it can be expected that ρ1can be computed
from ρ0. In other words, one can introduce a functional operator P companion to
M , called Perron-Frobenious Operator. While M transforms points into points, P
transforms probability densities into probability densities. Interestingly, in spite of
M being non linear, P is a linear operator, which makes it more manageable from
a mathematical point of view.

In the analysis proposed, the initial probability density ρ0 is stepwise in {Xi} ,
all subsequent probability density ρ1, ..., ρ∞ are then compelled to be stepwise on
the interval partition. So a finite dimension operator K can be substituted for the
functional operator P. Being K linear and finite-dimensional in can be represented
by a matrix, named kneading matrix. It has been proven that the entries of K can
be obtained from M as

K = µ (Xi ∩M−1(Xj))
µ (Xi)

. (4.2)

where µ is the common interval (Borel) measure, i.e., if Xi = [a, b], then µ (Xi) =
b−a. For instance the kneading matrix correspondent to the map in Eq. (Fig.4.1)(A)
is

K =


1
3

1
3

1
3 0

0 0 0 1
0 0 1

2
1
2

1
2

1
2 0 0

 . (4.3)

The entry Ki,j of K represents the conditioned probability by which a trajectory
starting in Xi falls in Xj at the next step. The process can be iterated and can be
seen in an infinite tree-graphs reported in Eq. (Fig. 4.2), by which the probability of
finding xn in any of the partition intervals can easily been obtained.
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Figure 4.2: Probability tree based on the map in Eq. (Fig. 4.1)(A).

It’s convenient to compact the tree-graphs such as in Eq. (Fig. 4.3).

Figure 4.3: State chain relative to the map in Eq. (Fig. 4.1)(A).

Note that this graph can be interpreted as aMarkov chain or a transition graph for
a probabilistic state machine. The machine is in its discrete state xi when the chaotic
system has its continuous state variable x in the partition interval Xi. The weights
assigned to the graph arrows represent the probabilities by which the machine travels
from a state to another.

4.1.3 Ideal chaotic map: Bernoulli Shift
Now, it’s interesting to understand how to design a chaotic source optimized for the
generation of random bits. A common example starts from the Markov chain in
Eq. (Fig. 4.4)
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Figure 4.4: Markov chain of the fair toss.

This corresponds to the toss of an unbiased coin and is a process generating inde-
pendently two symbols each with probability p = 1/2 so IID bits. Its correspondent
kneading matrix Eq. Eq. (4.4) is a 2 x 2

K =
(

1
2

1
2

1
2

1
2

)
. (4.4)

Given this K, one can design a correspondent PWAM map. One alternative is the
Bernoulli shift, where M(x) = 2xmod 2− 1 which is pictured in Eq. (Fig. 4.5)

Figure 4.5: Bernoulli shift.

This map has only two interval partitions X0 = [−1, 0) and X1 = [0, 1]. A logical
0 output generated when x < 0, and a logical 1 when x ≥ 0. By construction, this
ES is such that the observation of past sequences from the output cannot give any
information about the future values. Since the probability of being in either of the
two states is one-half, the single observation of this Markov chain gives 1 bit of infor-
mation each time step, so one (maximum) bit of entropy per cycle. Unfortunately,
the practical implementation of all the PWAM maps that comes out from kneading
matrix shown in Eq. Eq. (4.4) are not well suited for electronic realization. The
main problem is that such maps are unable to maintain the state confined into the
interval [−1, 1] in presence of noise or implementation errors.
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4.1.4 Chaotic Model for ADC Pipeline

The implementation presented in [25, 6, 26] is based on a pipeline ADC designed
to operate with one bit and a half stages as shown in Eq. Eq. (sec. 3.1). From this
configuration can be derived for each building block Eq. Eq. (3.3) a new map shown
in Eq. Eq. (Fig. 4.6)

Figure 4.6: Map derived from a building block of one and a half bit per stage
pipeline ADC .

This map is a variant of the Bernoulli shift but does not suffers the state confine-
ment problem: the chaotic behavior is ensured also when considering small. unavoid-
able implementation errors so this map is suitable for the practical implementation.
The interval partition on which M is PWAM is

{[
−1,−1

2

)
,
[
−1

2 , 0
)
,
[
0, 1

2

)
,
[

1
2 , 1

]}
.

Because of the noise sets the map initial condition, it’s virtually possible to extract
all the entropy available at the source. The system exhibits mixing properties: in-
dependently on initial condition, the probability distribution of state v(i)

j , at time
step j becomes uniformly distributed in X as j became large. Assuming a partition
χ of X equal to

χ = {X0, X1, X2, X3} =
{[
−1,−1

2

)
,
[
−1

2 , 0
)
,
[
0, 1

2

)
,
[1
2 , 1

]}

and referring to state x0: if v(i) ∈ X0, x1 if v(i) ∈ X1 and so on and the evolution of
the system is described by the four-state Markov chain in Eq. (Fig. 4.7)
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Figure 4.7: State chain of a chaotic ADC cell.

This chain is not suitable for the direct generation of random symbols. However,
its particularly regular structure allows to aggregate the states of the graph into the
two macro states x̂0 = {x0, x3} and x̂1 = {x1, x2}, notice that to obtain this result
at circuital level it is sufficient to XOR the comparator outputs Eq. 3.2 obtaining
a single random bit each clock cycle from two possible configurations namely state
x̂0 and x̂1. The resulting new state diagram is exactly the Markov chain depicted in
Eq. (Fig. 4.4). This prove that the system in Eq. (sec. 3.1) is a TRNG that generates
one random bit each time step.
The only assumption required to prove this equivalence is that the initial condition

of the system (that is v(i) at circuit start-up) is randomly drawn according to a
continuous probability function. This is verified assuming that the initial condition
is set by noise and only few time steps are required for the system to generate digital
samples distributed according to Bernoulli process. In the specific, with a Signal-
to-Noise Ratio (SNR) as high as 70dB, the results is obtained after only 25 clock
cycles.
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4.2 Digital Metastable Power-Up SRAM
The second analysis refers to the fully digital TRNG Architecture proposed in sec. 3.2
from [13]. It is based on Fingerprint extraction and Random Number generation is
SRAM (FERNS) method.

4.2.1 Guessing Probability and Min-Entropy
The system is fully digital and create random numbers using metastable cross-
coupled CMOS devices. It exploits the FERNS method: Fingerprint Extraction
and Random Numbers in SRAM . After the definition of the basic SRAM cell in
Fig. 3.5 and of the skew of a cell, in the specific 0-skewed,1-skewed and neutral-
skewed cell, that are convenient and illustrative simplification, now it’s possible to
understand how this RNG works. As explained in sec. 3.2, the neutral-skewed cells
in the SRAM can power-up to either state in presence of noise, so they work as
tiny, imprecise, six-transistor circuits scattered across the SRAM array, generating
and storing random bits at each power-up. This causes latent fingerprints to be
randomized.
To extract randomness from a 512-bytes latent fingerprintsX = {B1, B2, ..., B512},

privacy amplification is employed: the extracted secret is the random number, the
body of the information is the latent SRAM fingerprint, generated at power-up,
and the (partial) knowledge of the adversary is the tendency of each SRAM cell.
Using the metric of guessing probability γ(X) and minimum entropy (min-entropy
Eq. (sec.2.7)) H∞(X) is possible to specify bounds on the information that an enemy
can posses about an unobserved latent fingerprint.
The upper bound is the probability that the SRAM generate a particular latent

fingerprint, named the guessing probability of the system. It represents the outcome
of the most likely power-up state, that is the best possible guess of an adversary. The
guessing probability estimation of a latent fingerprint is based on the assumption
that all the 512 bytes are independent, so it can be estimated for each byte by
observing the most likely outcome across many trials. So the guessing probability
of the N-th bit over 100 trials is:

γ(BN) = max
{
P [BN = b] : b ∈ {0, 1}8

}
. (4.5)

The guessing probability of the latent fingerprint, under the assumption of bits
independence, is the product of each γ(BN):

γ(X) =
512∏
n=1

γ(BN). (4.6)

The lower bound on the amount of randomness contained in the power-up state
of SRAM in the measure of the entropy contained in the most probables power-up
state, defined as min-entropy:

H∞(X) = log2

(
1

γ(X)

)
. (4.7)
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It is found that min-entropy of SRAM power-up state varies with temperature.
Experiments comes from a population of 512-Kbyte SRAM chips, powered and read
out using Altera’s DE2 development board. They show that 512 bytes of latent
fingerprint can be used to create a 128-bit true random number: below we can see
results at three different temperatures Tab. 4.1:

Table 4.1: Observed min-entropy and associated guessing probability examples.

Temp(K) Min-Entropy(bits) Guessing Probability
273 189.2 2−189.2

293 202.3 2−202.3

323 218.7 2−218.7

4.2.2 Supply Voltage and Static Noise Margin (SNM)

The viability of the FERNS method depends on how the TRNG is sensitive to the
environments where the circuit will be used. As explained before, the ability of a
SRAM cell to hold a state depends on noise and process variation but also on the
applied supply voltage. Low supply voltage leaves a cell susceptible to noise-induced
state changes, while higher voltage makes a cell stable and immune to noise. The
minimum supply voltage at which a SRAM cell is able to tolerate “reasonable” noise
without changing state falls in the range of 100 to 300 mV. During power-up, it’s
assumed that the supply voltage begins to 0 V, where all cells can be influenced by
noise, and increases to a nominal operating voltage well above 300 mV, where all
cells are stable in the “0” or “1” state. The randomness in power-up SRAM state is
thus determined by cell behaviors at low supply voltage.

The noise immunity of a SRAM cell can be analyzed and quantified using Static
Noise Margin (SNM) metric, that is defined for a cell at a given supply voltage as
the maximum noise voltage that can be tolerated before changing state. Graphically
SNM can be seen as the shortest side of the largest box that can be placed inside
the eye of the Voltage Transfer Curves (VTCs) of the cross-coupled inverters that
comprise the cell.
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Figure 4.8: VTCs of a skewed and neutral SRAM cell at 100 and 250 mV supply
voltage. (a) SNMs of unskewed cell. (b) SNMs of 0-skewed cell.

As can be seen in Fig. 4.8, a noise-immune cell has two large eyes between the
inverter VTCs. SNM is greatly diminished at low supply voltage as expected. In cell
that are not skewed, low supply voltage causes the SNM of each state to be equally
small Fig. 4.8(a) and in highly skewed cells, low supply voltage can reduce the SNM
of one state to 0 V, indicating the existence of a single noise-immune state.
As showed in Tab. 4.1, also the temperature has an impact on MOSFET devices.

An increase in temperature decreases the device threshold voltages (thermal agita-
tion increase):

Vth(T ) = Vth(T0)− κ∆T. (4.8)

while also decrease the electron-hole mobility (number of collisions increase):

µ(T ) = µ0

(
T

300

)α
. (4.9)

These two trends may counteract each other during power-up, because a lowered
threshold voltage will increase sub-threshold current, while reduced mobility will
decrease sub threshold-current. Additionally, an increase in temperature increases
the magnitude of thermal noise

σ2
NOISE(T ) = 2kBT

C
. (4.10)

where kBis the Boltzmann constant (equal to 1.3806488x10−23 JK−1) which could
lead to a more random power-up state. The influence of these changing MOSFET
characteristic on SRAM power-up state is difficult to model but it can be noticed
that this kind of device works on a range of temperature well below the standard
high-performance VLSI circuits, that can exceed 400 K, because fingerprint and
random numbers are generated at power-up before any self-heating as occurred.
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4.2.3 Negative Bias Temperature Instability (NBTI)
Storing data in SRAM cells for long periods can cause burn-in, allowing the data to
be reconstructed long after it was stored. A modern version of burn-in in MOSFET
to consider is Negative Bias Temperature Instability (NBTI). NBTI is a phenomenon
by which deep sub-micron MOSFET threshold voltages increase over time due to
applied stress conditions of high temperature and vertical electric field caused by
the voltage in the MOSFET gate terminal. The effect is dominant in PMOS tran-
sistors because they almost always operate with negative gate-to-source voltage but
is present also in NMOS transistors. Once the stress is removed, devices begins to
recover and in cases where high gate voltage is applied without high temperature,
recovery can reach the 100%.
NBTI causes the skew of each SRAM cell to shift away from the value previously

stored by the cell. As example, consider a 0-skewed SRAM cell that stores a logical
0 (AB=01) as showed in Fig. 4.9.

Figure 4.9: NBTI raises the threshold of a stressed PMOS deviceM3 of a 0-skewed
SRAM cell: the skew shifts away from the logical 0.

Device M3 (PMOS), experience NBTI stress conditions and so has an increasing
threshold voltage afterwards. The next time this cell is powered-up, the higher
threshold voltage of M3 causes it to turn on more slowly than normal, making
the cell more likely to power-up to the opposing state, logical 1 in this case, as
before. Normal usage patterns of intermittently powered devices operating at low
temperatures should prevent incidental NBTI from being a significant concern.
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4.3 3rd Generation Intel® Core™ family processor Ivy
Bridge Digital RNG

The analysis refers to TRNG architecture presented in sec. 3.3 that refers to [20]. It
is a fully dedicated digital asynchronous pipeline, with a feedback control logic, that
exploits metastability in the ES and uses a conditioning circuit to reseed a DRBG
to produces random data in outputs. The system is also capable of on-line testing
(OHT unit) and BIST upon reset for initialization.

4.3.1 Metastable ES
The ES is the most critical component of the system: the state of the system is
described as the difference in charge between the two capacitors (A and B caps )
showed in Fig. 3.9, plus the previous output bit. This output bit allows to model
some causes of serial correlation.

I The distribution and amount of thermal noise affecting the output;

I The amount of charge added(removed) from the capacitors when outputting
a logic 0(logic 1), called for convenience right(left) step size;

I The distribution and amount of thermal noise that affect the step size;

I The difference in charge on the capacitors when the system start-up.

The procedure to generate a new output is modeled as follows:

Algorithm 4.1 New input routine.
Bias=(Diff_Charge_Caps);
Serial_Adj=if{(Previous_Output_Bit == 1) then 1 else -1} *
Serial_Coefficient;
If(Bias + Serial_Adj + Random_Thermal_Noise > 0) then:
Output=1;
Diff_Charge_Caps=Diff_Charge_Caps-Left_Step_Size + Noise;
Else
Output=0;
Diff_Charge_Caps=Diff_Charge_Caps+Right_Step_Size + Noise;

In ideal case (ideal TRNG) the thermal noise model would be:

I Gaussian SP with standard deviation σ = 1;

I Steps in either direction are always 0.1 unit with no noise;

I Serial_Coefficient = 0;

I Starting state with no charge on the capacitors.
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However the model presented in [20] is more realistic, thus follows non-ideal condi-
tions :
I Non-Gaussian SP for thermal noise;

I No constant Step sizes in each direction;

I Additive noise also on the step size;

I Positive or Negative Serial_Coefficient;

I Starting state presents some charge on the capacitors.
To perform some statistical analysis on this model, is required to quantize the charge
difference and limiting it to a few standard deviation. Doing so, the system can be
treated as a Markov Process and from it can be extracted Shannon entropy, min-
entropy and also “local” statistics such as auto-correlation and bias.

Figure 4.10: Effect of bias and serial coefficient on min-entropy with 0.2 mean step
size.

In Fig. 4.10 is showed an important result of this kind of modeling: if the serial
coefficient is positive or zero, then bias in the step size will decrease min-entropy.
However if it is negative then the bias will break the pattern of oscillation, which
may increase the entropy.

4.3.2 ES Failure Modes
Because of the ES is the most sensitive part in the RNG it is useful to consider its
possible failure modes:

I ES always shows single-bit bias, serial correlation and other small deviations
from perfect randomness. If these biases are severe, they may reduce entropy
rate of the ES below acceptable levels;
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I ES might take a long time to warm up (reach metastable state), and during
this time could output mostly 0s or mostly 1s until it settles on the metastable
region;

I ES might became stuck, always outputting 0 or always outputting 1;

I ES might oscillate between 0 and 1, or in some other short pattern;

I ES might be mostly stuck in one of the preceding patterns, but occasionally
deviate from it;

I ES might be influenced by an external circuit, such as chip’s power supply, in
a way that is predictable or exploitable by an attacker.

Of the possible failure above, most should be detected reliably by the Health &
Swellness Tests, showed in Tab. 3.1. Furthermore, the presence of a sophisticated
DDP stage should mitigate any such unexpected issues. The goal of the OHT unit
is to reject ES output with a little actual entropy. Since on production part a direct
measure of ES’s entropy is impossible, the design is intended to catch single points
of failure in the ES, such as the failure mode listed above. The question is that the
health checks are performed after the optional XOR filtering and synchronization
logic. The ratio of the frequencies (fasynch/fsynch) between the self-clocking ES and
the synchronous region is not exact integer, and will drift over time. Hence the
number of bits that are included in each sample crossing the clock boundary will
vary.
As an example, consider an ES that is “stuck at 1”, then the output of the XOR

filter will toggle between logic 0 and logic 1. The synch region under-sample the
XOR output, producing more complicated patterns, depending on how many ES
outputs were accumulated in each sample. If the frequency ratio is constant and
near 3.3, then the sampled output fails health checks by a margin of 5 samples. If
the frequency ratio varies slightly, or the ES is only mostly stuck at 1, then the
part may pass the OHT unit tests despite having little entropy. Such a failure will
go undetected since on production part it is impossible to examine the ES’s raw
output, that is fundamental as showed in [18, 28]. In effect, if the health tests were
performed on direct ES outputs, no repeating pattern with a period shorter than
12 bits can pass them. It is estimated that, under this failure mode still after the
XOR filter and clock domain crossing, the samples have a Shannon entropy rate of
nearly 0.4, with a min-entropy slightly lower. Even if this is less than the Shannon
entropy’s design margin of 0.5, the system’s conservative initialization allows it to
come up securely with a min-entropy rate of 0.004 that is two order of magnitude
less than this failure allows.
As seen in sec. 3.3, the first generation of Intel RNG does not implement the XOR

filter. However the ES’s outputs are still under-sampled by the synchronous logic
but the go directly to the OHT unit, so the health checks are more effective without
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the XOR filter e.g., a failure such as “mostly stuck at 1” will certainly be caught.1
But, without the XOR filter, the OHT unit will not be forgiving of bias in the
entropy source. Any part which is biased by more than 57% ones to 43% zeros (or
viceversa) is likely to fail BIST.
These concerns can be resolved by having the OHT unit that operates on all

ES outputs bits directly. In future versions of the RNG, the ES output will be
deserialized and then sample in parallel into the synchronous region, providing most
or all the raw ES output to the health checks.
The swellness check serves for three main purposes:

1. It causes the first 129 healthy (256-bit) samples from the ES to be conditioned
into the DRBG’s key during BIST. Thus, it saturates the required 128-bit
entropy pool even if those samples have min-entropy rate as low as 0.004
design margin;

2. It prevents the RNG from passing BIST unless at least 129 of the first 256
samples are healthy;

3. It prevents the system from remaining mostly unhealthy fro too long.

Furthermore swellness protects reseed logic in long term application. As explained
in sec. 3.3, reseed happen every few blocks, but if user are not consuming much
entropy, then the time between reseeds may be long. During this time, the ES’s
capacitors might discharge, and when the ES is turned back on, it might generate
poor data. If most of this data fails the health checks, then the swellness check will
eventually fail, preventing the RNG to output weak random bits.

4.3.3 DPP and Clock Gating
Entropy conditioning is done via two independent AES-CBC-MAC chains Fig. 3.10,
one for the generator’s key (K) and one for the counter (C) that works also as
entropy extractors. During BIST the conditioner accumulates at least 129 healthy
samples for the DRBG’s key, so after a restart even if the entropy rate is low, the
generator will be in a secure state before it returns any data.
The RNG supports clock gating to reduce power consumption. If no application

request entropy for a short time (no RDRAND call), the RNG will freeze its clock
and stop the ES. This approach may affect the quality of the entropy produced
because, the charge on the capacitors may dissipate when the ES is not operating
but Intel suggest that is not an issue, as the ES resumes normal operation “quickly”,
worst case simulation by Intel shows that only the first 256b bit could be affected
by a “warm-up effect”. In addition, there should be sufficient entropy in the DRBG
from the initial seeding during BIST.

1Notice that, with sec. 3.3 design is possible to skip the XORing phase and overwrite the buffer
before crossing the clock boundary
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5.1 Historical Fails
It is better to start remembering some recent historical fails.

5.1.1 Cracking Data Encryption Standard (DES)
http://lasec.epfl.ch/memo/memo_des.shtmlThe Data Encryption Standard (DES)
is a published federal encryption standard created to protect unclassified computer
data and communications. DES has been incorporated into numerous industry and
international standards since the Secretary of Commerce first approved DES as a
Federal Information Processing Standard during the height of the Cold War in the
late 1970s. The encryption algorithm specified by DES is a symmetric, secret-key
algorithm. Thus it uses one key to encrypt and decrypt messages, on which both
the sending and receiving parties must agree before communicating. It uses a 56-bit
key, which means that a user must correctly employ 56 binary numbers, or bits, to
produce the key to decode information encrypted with DES.
Although the initial selection of the algorithm was controversial since the US

National Security Agency (NSA) was involved in its design, DES had gained wide
acceptance and had been the basis for several industry standards, mainly because it
was a public standard and can be freely evaluated and implemented. DES technology
is readily available worldwide, and several international standards have adopted the
algorithm. The process by which DES was developed and evaluated also stimulated
private sector interest in cryptographic research, ultimately increasing the variety of
commercial security technologies. By 1993, 40 manufacturers were producing about
50 implementations of DES in hardware and firmware that the National Institute
for Standards (NIST) had validated for federal use.
Stand to the declarations of the Electronic Frontier Foundation (EFF) at that

time, the U.S. government had increasingly exaggerated both the strength of DES
and the time and cost it would take to crack a single DES-encrypted message. In fact
EFF had proved that a brute force attack is possible using a quite simple dedicated
machine, defined as DES Cracker.
A ’DES Cracker’ is a machine that can read information encrypted with DES

by finding the key that was used to encrypt that data. The easiest known way to
build a practical DES Cracker is to have it try every key until it finds the right
one (brute force). The design of the EFF DES Cracker is simple in concept. It
consists of an ordinary personal computer with a large array of custom "Deep-
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Crack" chips. Software in the personal computer instructs the custom chips to begin
searching for the key, and also functions to interface with the user. The software
periodically polls the chips to find any potentially interesting keys that they have
located. The hardware’s job is not to find the answer, but rather to eliminate most
incorrect answers. The software can then quickly search the remaining potentially
correct keys, winnowing the "false positives" from the real answer. The strength
of the machine is that it repeats a search circuit thousands of times, allowing the
software to find the answer by searching only a tiny fraction of the key space. With
software to coordinate the effort, the problem of searching for a DES key is "highly
parallelizable." A single DES-Cracker chip could find a key by searching for many
years. A thousand DES-Cracker chips can solve the same problem in one thousandth
of the time. A million DES-Cracker chips could theoretically solve the same problem
in about a millionth of the time.
In 1998 DES Cracker won the speed competition posed by RSA Laboratories.

Starting at 9:00 AM PST, Monday, July 13, 1998, the EFF DES Cracker began
searching for the right key. The machine found the answer at 5:03 PM Pacific PST,
Wednesday, July 15. Coincidentally, it took the EFF DES Cracker 56 hours to find
a 56-bit key. When the EFF team started the search on Monday morning, they
had 35868 search units running on 26 boards (each search unit examines 2.5 million
keys per second). The team stopped the search for a few minutes on Tuesday night
to improve the software and then again for a few minutes on Wednesday to add a
27th board, which sped up the machine slightly (to 37050 search units). The EFF
DES Cracker searched 17,902,806,669,197,312 keys to find the correct answer, which
averages out to a rate of 88,803,604,509 keys tested per second (88 billion). The
machine was examining 92,625,000,000 keys per second when it found the answer.
The key was found after searching almost exactly a quarter of the key space (24.8%).
After DES cracking NIST had started the process of developing an "Advanced

Encryption Standard" or AES, which was designed to last for a decade or more
after its adoption. Now AES is still evolving and it is the public standard adopted
worldwide.

5.1.2 OpenSSL DSA and ECDSA
Luciano Bello discovered a serious flaw in the DRBG that shipped with the
OpenSSL cryptography library on Debian and Ubuntu Linux systems from Septem-
ber 2006 to May 2008 [1]. All OpenSSL keys generated by the affected systems were
compromised, including server certificates, SSH login keys and email signing/encryp-
tion keys. More recently, in 2012 a study showed that an unexpectedly large number
of Rivest Shamir Adleman (RSA) moduli share common prime factors, which can
easily be computed using the Greatest Common Divisor (GCD) algorithm.
One of the most likely causes is poor random number generation processes . The

need for strong randomness is not limited to key generation. For example, the pop-
ular Digital Signature Algorithm (DSA) and Elliptic Curve DSA (ECDSA) digital
signature standards require a random value when each signature is produced. Even
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very slight biases in the RNG used to produce this value can lead to exploitable
cryptographic weaknesses. Bleichenbacher discovered that the nonce generation
method defined in FIPS 186 was slightly biased, and this bias could be used to
mount a cryptanalytic attack against DSA and ECDSA.

5.2 TRNG Statistical Hypothesis Testing (SHT)

Figure 5.1: Testing Randomness.

Fig. 5.1 is a good introduction for the randomness testing field, its statement is
clear: randomness is a relative subject. 1 Using Probability theory tools it is
possible to face this challenge and test a TRNG module. The key to solve this kind
of problem is to understand the approach and find the right focus in each situation.
The methodology used is under the name of Statistical Hypothesis Testing (SHT) or
simply Statistical Test (ST). Recalling the concept of null and alternate hypothesis
from sec. 2.10, in this case H0 tests if the occurrence of logical 0 and logical 1 is
independent and identically distributed over the sampled sequence. Formally:

Definition 5.1. Statistical Hypothesis Test (SHT). Given a bit sequence a
of length n it is possible to test some H0 with some DSP block. Given a fixed
threshold value α, defined as significance level it is possible to extract from the
test an output called P-value or P-val and compare it with the significance level.

Fig. 5.2 shows the block scheme, the flowcharts in this chapter are color coded,
the orange part represents the processing phase, the signals are plotted in blue,
the significance level is plotted in purple and the acceptance/rejection is plotted in
green/red. The scheme of a generic ST is very simple: given a null hypothesis H0, a
random bit sequence of length n and a fixed significance level α, the system is able
to provide an P-value in output.

1http://dilbert.com/strips/comic/2001-10-25/
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Figure 5.2: TRNG Statistical Test .

The meaning of the P-value is dictated from the type of test performed and from
the alpha’s value.2 Following the usual criterion of an hypothesis test is it possible to
determine if the null hypothesis is rejected or not with a certain confidence, namely:

if

P− value ≤ α then H0 is rejected with a confidence of 1− α;
P− value > α then H0 is accepted with a confidence of 1− α.

(5.1)

It is important to stress out that, as can be seen from the second statement in
Eq. 5.1, that every statistical test, to make sense, start from some hypothesis that
introduce an error, and ends with an interpretation of the results that depends
strictly on the initial assumption. E.g., suppose that α = .001, and P− value ≥ α
so H0 is not rejected, or in other terms, is accepted with a confidence of 99.9%.
This means that the sequence pass the test with the 0.01% of being completely
non-random. For this reason it is possible to define two correlated type of errors:

Definition 5.2. False positive error. Incorrect rejection of H0. In each test there
is always a non-zero probability of this type of event:

Pr (p ≤ α) = CDFiid(α) = α.

It is also called type I error, and in TRNG testing occurs when you discard a good
(presumably IID) sequence of random bits. α it is used as a measure of significance
and it is a fixed value.

Definition 5.3. False negative error. Incorrect acceptance of H0. In each test
there is always a non-zero probability of this type of event, denoted with β. It
is also called type II error, and in TRNG testing occurs when you accept a bad
(presumably non IID) sequence of random bits. β is not a fixed value and it is more
difficult to compute. but it can be estimated from the values of α and the size n of
the tested sequence.

min (β) = min (α, n) .
2α usually spans from .05 to .001
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Usually the aim is to minimize β with respect to α, because we can tolerate that
occasionally a random sequence does not pass a test but it is more dangerous if
occasionally a non-random sequence pass test. So to produce the smallest β test
setting α and n must be set well.
It is important to stress out that randomness is a relative subject, so the key of

statistical testing is the interpretation of results (P-values) with respect to the
null hypothesis. To give a perspective remember that an ideal RNG can generate,
during normal operating conditions, 100 consecutive logical zeros but under some
null hypothesis is considered, rightly, as non random.
There are three test suites of interest, they are general purpose in the sense that

they can be applied for TRNG and PRNG:

1. DIEHARD [8]: provided by the mathematician G. Marsaglia from Florida
State University. It is a battery of twelve tests implemented in many program-
ming language (initially FORTRAN and C). Since 1990 the suite is distributed
for free at the beginning as a CD-ROM and now on the internet (link in the
reference). It expects input files of the order of 10-11 MB (at least 80Mbits).

2. dieharder [5]: The dieharder suite is more than just the DIEHARD tests
cleaned up and given a pretty GPL’d source face in native C. Tests from the
Statistical Test Suite (STS) developed by the National Institute for Standards
and Technology (NIST) are being incorporated. It expects GB file order.

3. NIST SP 800-22 [27]: provided by the American National Institute of Stan-
dards and Technology. It is a fifteen tests battery and represent the state
of the art for RNG testing. These tests were used by the Federal Informa-
tion Processing Standard (FIPS) publicly to select, from all the candidates,
the actual Advanced Encryption Standard (AES) cipher, developed in 2001 by
two Belgian cryptographers: J. Daemen and V. Rijmen. The test suit ini-
tially consisted of sixteen statistical test, but the Discrete Fourier Transform
(Spectral) test and the Lempel-Zip Compression test were disregarded due to
problems identified by NIST and other researchers [19].

In this work will be presented the latter

5.3 NIST test suite: SP800-22
NIST SP800-22 [27] is a fifteen tests battery and represent the state of the art for
RNG testing (both Pseudo and True). Notice that this tests suite was used by the
Federal Information Processing Standard (FIPS) publicly to select, from all the can-
didates, the actual Advanced Encryption Standard (AES) cipher, developed in 2001
by two Belgian cryptographers: J. Daemen and V. Rijmen. The test suit initially
consisted of sixteen statistical test, but the Discrete Fourier Transform (Spectral)
test and the Lempel-Zip Compression test were disregarded due to problems iden-
tified by NIST and other researchers [19].

Daniele Antonioli 75



Chapter 5 Testing of a RNG

Each of these tests hypothetically quantifies a certain aspect of randomness i.e.
testing a different null hypothesis. Given a bit sequence a of length n, the significance
level α is fixed apriori in the interval [.001, .01]. The bit sequence coming from a
RNG is analyzed using a specific data processing technique for each tests. The aim
of NIST’s tests is to minimize β, namely the probability of accept a non-random bit
sequence. All of the subsequent tests assume implicitly that all the discussions and
computation are under the randomness hypothesis (the null hypothesis).
There are two classes of tests:

1. Erfc. This class of tests, indicated with the letter E in Tab. 5.1, are based on
Thm. 2.15 (de Moivre-Laplace) where a Bernoulli SP can be approximated
with a Gaussian RV, so the P-val can be computed using the Complementary
Error function erfc(x), plotted in 5.3a.

2. Chi-square. This class of tests, indicated with the letter C in Tab. 5.1, are
based on Chi-Square χ2 test Thm 2.16, where the resultant statistics should
fit with a theoretical Chi-square distribution, so the P-val can be computed
using the Upper Incomplete Gamma function gammainc(a, b,′ upper′), plotted
in 5.3b.

(a) erfc(x). (b) gammainc(a, b,′ upper′).

Figure 5.3: NIST SP800-22 test’s class.
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It is useful to show a synthetic review of all the 15 tests in Tab. 5.1:

Table 5.1: NIST SP800-22 summary.

Test Name Null Hypothesis Code

1 - Frequency Mono-bit Test Good proportion of 1s and 0s. E
2 - Frequency Test within a Block. Good proportion of 1s and 0s within N

blocks of M-bit.
G

3 - Run Test (FMt pre-requisite). No clusters of 1s and/or 0s in a
sequence. A run is series of
consecutive 1s or 0s.

E

4 - Test for the Longest Run of 1s in a
Block (implicitly test also the LR of
0s)

No clusters of 1s and/or 0s in N blocks
of M-bit.

G

5 - Binary Matrix Rank Test. Low linear dependence between
sub-strings, that means sub-matrices
with high rank (full rank=M).

G

6 - Discrete Fourier Transform
(Spectral) Test.

Balanced amount of peaks in the
frequency domain, (not a lot of
periodic patterns in time domain).

E

7 - Non-Overlapping Template
Matching Test.

Not too many non-overlapping equal
sequences.

G

8 - Overlapping Template Matching
Test.

Not too many overlapping equal
sequences.

G

9 – Maurer’s Universal Statistics Test. Sequence cannot be significantly
compressed.

E

10 – Linear Complexity Test. Sequence with long Linear Feedback
Shift Registers (LFSRs).

G

11 – Serial Test. Every m-bit template has equal
probability to arise.

G

12 – Approximate Entropy Test. Not regular occurrence of the same
overlapping template.

G

13 – Cumulative Sums (Cusums) Test. Cumulative sum (considered as a
random walk) excursion near zero.

E

14 – Random Excursion Test. Random Distribution of visits among
cycles to eight states (eight P-values
provided).

G

15 – Random Excursion Variant Test. Random Distribution of visits among
cycles to eighteen states (eighteen
P-values provided).

E

As you can see the suite contains fifteen tests. Each test in the NIST suite requires
a pre-defined minimum sample set of size ranging from 100 bit to 100 Kbits.The
majority of them:
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I either examine the distribution of zeroes and ones in some fashion:

I or study the harmonics of the bit stream utilizing spectral methods:

I or attempt to detect patterns via some generalized pattern matching technique.
The complexity of the test increase with the number. Generally a good RNG should
be able to pass all fifteen test. Notice that there are some tests able to provide
multiple P-values e.g. Cusums. All the material is distributed for free using a
framework (not very user friendly) written ANSI C programming language. 3

In the next subsections I will present some of the most important NIST SP800-22
ST, the explanation will be aided by some flowcharts that I personally create to
simplify the treatment.

5.3.1 Frequency Mono-bit (FMT)
The first test is called Frequency Mono-bit Test (FMT), it is a sort of preliminary
filter for the other fourteen, because it is very difficult that a sequence that fails
FMT pass the others tests.

Figure 5.4: FMT flowchart.

As you can see from the Fig. 5.4, the aim of this test is to verify a good proportion
of logical 1s and logical 0s in the bit sequence. In the specific a bit sequence a is
processed by the first block that computes the normalized sum of the input such
that:

an(i) =

1 if a(i) = 1
−1 if a(i) = 0

(5.2)

S =
∑
i

an(i). (5.3)

Then, the test take the absolute value of S and divide it by the square root of n,
obtaining a constant s. This constant is divided by the square root of two and
used as argument for the complementary error function. A P-val is computed and
compared with the significance level α, then a decision is taken.

3http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
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5.3.2 Frequency Test within a Block (FTwB)

The second test is the Frequency Test within a Block (FTwB). This test is based on
the same null hypothesis of the FMT, but the bit sequence is splitted into N block
of M-bit discarding the remainings, and each block is separately processed.

Figure 5.5: FtwB flowchart.

As you can see from in Fig. 5.5, for each block is computed the power of the dis-
tance between the proportion of ones and the theoretical ideal distance .5; then the
results are accumulated in a vector, multiplied by a constant and given as input
argument to the gammainc function with N\2 degrees of freedom. A P-val is com-
puted and compared with the significance level α, then a decision is taken. Notice
that, if M = n, this test degenerates in a modified version of Fmt.

5.3.3 Runs Test (RT)

The third test presented is the Runs Test (RT). This test has the FMT as a pre-
requisite. A run is defined as a series of consecutive logical 0s or logical 1s and this
test study if there are clusters of consecutive 1s and/or 0s in a random bit sequence.
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Figure 5.6: RT flowchart.

As you can see from Fig. 5.6, if the proportion of 1s in the sequence is less then a
certain threshold, defined by NIST as τ = 2√

n
, the RT is not performed and returns

a 0 P-val. If the tau condition is met, the bit sequence is scanned such a way that
the vector c contains 1s each time the bit sequence flips and 0s otherwise. Then
c is accumulated, increased by one and used as an argument of the erfc function.
A P-val is computed and compared with the significance level α, then a decision is
taken.
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5.3.4 Longest Run of 1s Test (LR1sT)
The fourth test proposed is the Longest Run of 1s Test (LR1sT). This test study
the presence of clusters like the RT, but it is applied on subsets of the sequence,
namely N blocks of M-bit.

Figure 5.7: LR1sT flowchart.

In Fig. 5.7 is presented the configuration for M=8, thus N=floor(n/M). This as-
sumption sets implicitly the degree of freedom of theoretical chi-square distribution
K=3. The input random bit sequence is splitted into N blocks of M bit, discarding
the remainings. Each block is scanned and return a value equal of its max run of
1s. In this configuration the vector b can count four different runs type namely:

1. b(0) counts the number of runs with length 0 and 1.

2. b(1) counts the number of runs with length 2.

3. b(2) counts the number of runs with length 3.

4. b(3) counts the number of runs with length 4,5,6,7,8..
Then some computations are performed on b giving out the vector x and then a
P-val is computed using gammainc and compared with the significance level α, then
a decision is taken.

5.3.5 Binary Matrix Rank Test (BMRT)
The fifth test proposed is the Binary Matrix Rank Test (BRMT). This test study
the linear dependence between sub-strings of random bit using the rank of matrix
as an index.
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Definition 5.4. Rank of a nxn square matrix is the number of linear independent
columns/rows, the min rank is 0 (all zero entries) and the max rank is n, if a matrix
M has max rank, M is defined as a full rank matrix.

Figure 5.8: BMRT flowchart.

As you can notice from Fig. 5.8, the input sequence is splitted into N matrices with
dimension MxQ, where M=Q (N square matrices). For each matrix is computed the
rank, then a three-dimensional vector c store:

I c(1) number of full rank matrices.

I c(2) number of full rank - 1 matrices.

I c(3) others.

Then some computation are performed using c, namely:

d = (c(1)− pr(1)N) 2

pr(1)N + (c(2)− pr(2)N) 2

pr(2)N + (c(3)− pr(3)N) 2

pr(3E)N . (5.4)

Then the result d is used as argument to compute the P-val. The output is
compared with the significance level α, then a decision is taken. Notice that this
tests appears also in the DIEHARD suite and was invented by a mathematician
named Kovalenko [21].
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5.3.6 Non-overlapping Template Matching Test (NoTMT)
The sixth test presented is called Non-overlapping Template Matching Test (NoTMT).
This test study the frequency of pre-defined non-overlapping patterns. Notice each
pattern return a P-val.

Figure 5.9: NoTMT flowchart.

As you can see from Fig. 5.9, the input bit sequence is splitted into N blocks of
M-bit discarding the remainder, NIST recommend N = 8. In this case we fix also
the input bit length n = 512 and the correspondent template length m = 9 as
recommended by NIST (m >= 9, 10 ). Then the remaining constants can be fixed:

mu = (M −m+ 1)/2m,

var = M ∗ (1/2m − (2 ∗m− 1)/2(2 ∗m)).

Given a template, e.g. 101111001, each block is compared with template bit wise
and has its dedicated counter, if there is a complete matching the count goes up and
the template is shifted of m position (non-overlapping). Then each counted value is
processed using the constants mu and var obtaining the vector c. This vector is used
as one argument for the gammainc function. A P-val is computed and compared
with the significance level α, then a decision is taken. This process is repeated for
each template tested.
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5.3.7 Overlapping Template Matching Test (OTMT)
The seventh test proposed is the Overlapping Template Matching Test (OTMT).
This test study the frequency of pre-defined overlapping patterns. Notice each pat-
tern return a P-val.

Figure 5.10: OTMT flowchart.

As you can see from Fig. 5.10, the procedure is equal to the one described in
sec. 5.3.6, with only one difference: it there is a complete matching between the m-bit
template and the sub-string analyzed, the patterns is shifted of 1 bit (overlapping)
and, as in the non-overlapping case, the counter is incremented by one.
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5.3.8 Cummulative Sum Test (CST)
The eighth test presented is the Cummulative Sum Test (CST). This test analyze
the excursion from 0 of the random walk.

Figure 5.11: CST flowchart.

CST performs a double test:

1. FORWARD mode. The bit sequence is normalized, see Eq. 5.2. Then it is
computed the max excursion of the normalized bit sequence (random walk).
Then some processing is performed involving the normal CDF Φ. A forward
P-val is computed and compared with the significance level α, then a decision
is taken. Notice that the forward test focus on the beginning of the input.

2. BACKWARD mode. The bit sequence is flipped and then normalized, see
Eq. 5.2. Then it is computed the max excursion of the flipped normalized
bit sequence (random walk). Then some processing is performed involving
the normal CDF Φ. A backward P-val is computed and compared with the
significance level α, then a decision is taken. Notice that the backward test
focus on the last part of the input.
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6 Hardware Implementation of
Reduced NIST SP800-22

This chapter refers to my personal publication, submitted (4 Jan 2013) and ac-
cepted (22 Feb 2013) for IEEE Hardware Oriented Security and Trust (HOST 2013)
Symposium that will take place in Austin TX (June 2-3 2013 ). 1

The title of the paper is:

“On-chip Lightweight Implementation of Reduced NIST Ran-
domness Test Suite [32]".
Keywords: PRNG, TRNG, NIST, Statistical Test.

The work was made between Oct and Dec 2012 at UMass Amherst (MA) in the
VLSI/Security Lab collaborating with my advisor: Prof. Riccardo Rovatti and
my two co-advisors: Prof. Wayne Burleson and Ing. Vikram Suresh and all
the other kind people of the Lab.

6.1 Abstract
On-chip Random Number Generators (RNGs), are critical component in lightweight
ubiquitous devices like RFIDs and smart cards. The work proposes an on-chip im-
plementation of a reduced set of NIST SP 800-22 statistical tests (details in sec. 5.3).
The aim is to provide on-line RNG testing for low cost security devices along with
run-time monitoring of RNG performances. The on-chip NIST module, monitors
the effect of dynamic variation of operating condition and time dependent wear-out
on RNG circuits. It indicate invasive attacks on RNG and allows the secure system
to take protective measure. Six NIST test suite are optimized to a hardware design
friendly format, but in compliance with the NIST standard.
The lightweight implementation reduce complex statistical and arithmetic oper-

ations of conventional NIST tests, to a series of bit stream count and compare
operations. The need for additional storage is eliminated by the fact that incoming
bits from RNG are serially tested cycle-to-cycle. A partial re-configurable feature is
designed to set the pass/fail threshold for each test, depending on system require-
ments. The on-chip NIST module, although not exhaustive, is an effective layer of
validation and security, for RNG circuits.

1http://www.engr.uconn.edu/HOST/
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The six 128-bit tests implemented in 45 nm using open-source North Caroline
State University Process Design Kit (NCSU PDK), have a total synthesized area of
∼ 1926 µm2 for an optimized frequency of 2 GHz. The total dynamic power is 3.75
mW and leakage power is 10.5 µW. At 2 Gbps, the NIST module consumes 1.87
pJ/bit. The lightweight implementation is scalable for larger input bit samples.

6.2 Motivations
As extensively studied in this work, RNGs are critical blocks in a variety of cryp-
tographic system. As a result, weak RNGs can be a single point of failure of the
entire system. Roughly speaking, the weakness of a RNG can be due to weak algo-
rithm (PRNG), or a bad ES and process induced variation in sample and digitize
circuit (TRNG). So the reliability of a TRNG circuits depends strictly on physical
implementation, therefore the statistics of these circuits have to be validated post
device fabrication. Unlike conventional VLSI testing methodologies, the statistics
of TRNG circuit cannot be tested using fault models, thus large set of data have to
be generated and validated using some test suite.
The constant technological scaling provides increasing parameters variation in

fabrication process of ICs, thus testing a lager sample of chip does not necessary
guarantee a good TRNG in every chip. On the other side, an exhaustive post-
fabrication test will increase the test time and hence the cost per chip.
We propose a lightweight implementation of six (out of fifteen) statistical tests

in the NIST test suite. The proposed implementation is not a replacement to the
exhaustive testing provided by the NIST standard, however they encompass the
mandatory tests listed in FIPS 140-1 standard [22] and provide an additional layer
of security for lightweight TRNG implementation and it can detect abnormal be-
havior due to variation in fab process, dynamic variation in environmental condi-
tion during run-time (e.g. PVT conditions) and direct indirect malicious attack
on TRNGs. Further, the NIST module can be turned ON intermittently to reduce
power overhead.
Smart cards, RFID tags and sensor nodes are only some example of low cost

device that needs TRNG, these devices cannot afford to go through an extensive
post-fabrication testing process to validate the TRNG circuits. They are also highly
constrained in area, and may passively powered and battery operated. Therefore,
a lightweight on-chip NIST module provides efficient statistical validation for the
generated random bit stream.
Time-dependent wear-out phenomena like Negative Bias Temperature Instability

(NBTI) and Hot Carrier Injection (HCI) can degrade over time the circuit, thus a
one-time statistical test performed during the chip testing phase does not provide
constant monitoring of circuit behavior. An on-chip test module can be used to
continuously monitor the RNG output. The cryptographic system, using the test
module can male an informed decision about the randomness of inputs in run-time.
In [14], a complete NIST test suite implementation has been proposed for real-time
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statistical testing. However, such an implementation adds tremendous area overhead
to the system, consuming orders of 1000’s of flip flops. The authors indicate that
only two NIST tests could be ported completely on a Xilinx Virtex II Pro FPGA
V2P30.

There are many ways of attacking a RNG. In [17] J. Kelsy, et. al discuss in
detail the various cryptanalytic attacks on PRNG. Side channel attack, Electromag-
netic wave attacks and eavesdropping attack are common examples been reported
in literature. Commercial microprocessor manufacturers use on-chip sensors (tem-
perature, voltage) to detect invasive attacks. An on-chip NIST module can detect
variation in randomness, which is the symptom of an attack, thereby protecting the
device against all sources of attack. This randomness information can be used by
the secure module to take necessary evasive action like a Denial of service (DoS)
to the attacker. In a shared-key protocol for secure communication, the system can
test the received key using on-chip NIST module to get a measure of randomness of
that key, rejecting or accepting it.

All systems using TRNG employ some form of calibration or DPP to mitigate
the effect of physical variation of the ESs, for details see sec. 1.2.3, an on-chip test
module allows multiple post-processing units to be implemented and then select the
appropriate one based on the quality of the TRNG, the other blocks can be powered
OFF to reduce the leakage power.

Resuming, on-chip statistical test suite is imperative for secure computation on
lightweight devices with scaling technology, cost/chip reduction and increasing inva-
sive attacks. We propose a lightweight implementation of 6 statistical test from NIST
test suite. The test are chosen based on the minimum sample set recommended by
NIST and the complexity of storage and computation in terms of ultra-low power
implementation .

6.3 Reduced NIST SP800-22 test suite

Testing the randomness of a bit sequence is as challenging as generating them. Ran-
domness is a relative term and there is no definite metric to quantify it. Statistical
Hypothesis Testing (SHT) or simply Statistical Test (ST) are the common approach
in this field, see sec. 5.2 for details. These tests provide a hypothesis of whether
the bit sequence can be considered random or not, with a specific level of confi-
dence. Since the focus of this work is to realize a test module for ultra-lightweight
applications, we choose six out of fifteen NIST tests, see Tab. 6.1.
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Table 6.1: NIST SP800-22 candidates.

Test Name Null Hypothesis

Frequency Mono-bit Test Good proportion of 1s and 0s.

Frequency Test within a Block. Good proportion of 1s and 0s within N
blocks of M-bit.

Run Test (FMt pre-requisite). No clusters of 1s and/or 0s in a
sequence. A run is series of
consecutive 1s or 0s.

Test for the Longest Run of 1s
in a Block (implicitly test also
the LR of 0s)

No clusters of 1s and/or 0s in N blocks
of M-bit.

Binary Matrix Rank Test. Low linear dependence between
sub-strings, that means sub-matrices
with high rank (full rank=M).

Non-Overlapping Template
Matching Test.

Not too many non-overlapping equal
sequences.

Our reduced set includes the four tests mandated by FIPS 140-1 standard [22].

The Complementary Error function and the Upper Incomplete Gamma function
are the bottleneck in computing the P-val for each test. To reduce the computation
required, we fix the bit-length value n and compute the range of input x to the erfc
or gammainc, which lead to a P-val greater than the critical value of a. Notice that
is possible to use this back-of-envelope calculation because the two complex function
are strictly monotonic (increasing CDFs), thus the inverse of these function is strictly
monotonic (decreasing). We completely eliminate the need of complex computation
of error function and gamma function, thereby significantly reducing the complexity
of hardware required to implement the tests. In fact, the proposed implementation
shifts the results dependence from the P-vals to the x values, without losing in ac-
curacy because the two are one-to-one mapped. The partial reconfigurable feature
allows the user to set the critical value α depending on the need of the applica-
tion to make the test more stringent. Modifying the critical value only varies the
bounds for the input to the complex function. The bounds can be set one-time by
blowing fuses or can be configured using registers to store the values. Furthermore,
all the computations are performed serially on the incoming bits from the RNG,
this eliminates the need for additional storage devices, except for byte-wide shift
registers.
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6.4 Lightweight Implementation of reduced NIST
Test Suite

In this section a detailed description of the lightweight implementation for the Fre-
quency Test within a Block (FTwB) is presented, see sec. 5.3.2. The implementation
of the other five tests is also based on similar techniques. For a detailed statistical
analysis of each test, interested readers may refer to [27].
As showed in Fig. 5.5, the FTwB checks for a good proportion of 1s and 0s in

block of random bits. The M parameter is settable and implicitly sets N, the other
bits are discarded. For each block is computed the power of the distance between
the proportion of ones and the theoretical ideal distance .5; then the results are
accumulated in a vector, multiplied by a constant and given as input argument to
the gammainc function with N\2 degrees of freedom. A P-val is computed and
compared with the significance level α, then a decision is taken. Notice that, if
M = n, this test degenerates in a modified version of Fmt.
It is evident that the gammainc computation is the most resource-consuming

part. Using the above steps, we have reduced the test complexity for a general case
(n = 128, M = 8) to accommodate it for a lightweight hardware implementation:

Algorithm 6.1 FTwB reduction.
Let n = 128 and M = 8;
Thus N = floor (n/M) = 16 non-overlapping blocks;
n−MN bits discarded;
Assuming α = .01, the test passes for P− val ≥ .01;
Hence gammainc(c/2,N/2,′ upper′) ≥ .01;
Computing the inverse of gammainc(), fixing the second argument leads to

c ≤ 16

Notice that the inverse flips the disequality;

Knowing that c = 4M
∑N

i=1

(
#1s
M − .5

)2
≤ 16; If a counter x is used to

count the number of 1s in each block then: 4M
∑N

i=1
( x

M − .5
)2 ≤ 16; Thus∑N

i=1 (x− 4)2 ≤ 32, is the new condition for passing FTwB.

The complex computation to estimate the P-val and hence deem a bit stream to
pass/fail the FTwB with confidence 1 − α, can be reduced to a series of counter,
offset calculation and squaring operations. As already proved, all computations
make sense because the CDF function is monotonic (increasing) and its inverse it is
monotonic too (decreasing). All the calculations involve whole numbers, allowing a
simpler combinatorial logic implementation.
By calculating the bounds of input to gammainc function, the FTwB is optimized

to a series of count, accumulate and compare operations, as shown in Fig. 6.1:
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Figure 6.1: Flow of optimized FTwB.

The complex gammainc function is avoided enabling a lightweight implementa-
tion. The hardware implementation for each stage of FTwB is as show in Fig. 6.2:

(a) Enable counter (c). Variance calcu-
lator (d).

(b) Squaring the variance (s).

(c) Accumulator and Comparator.

Figure 6.2: Digital logic for lightweight FTwB implementation.
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Similar to FTwB, other NIST tests are also reduced to facilitate optimum hard-
ware implementation. All the tests operate on each incoming bit from the RNG
serially, thereby minimizing additional hardware to store the bits. Only for the
NoTMT and the BMRT, a 10 bit and 8 bit shift registers are used respectively to
store the previous bits. The counters and control logic is shared across different
tests to further optimize area and power.
The partial reconfigurable feature of the reduced NIST test module provides the

flexibility of choosing a different critical value α for each test, based on the require-
ment of the platform/application. The reconfigurable bound registers in each test
module allows appropriate value of α to be set as the threshold critical value for test
pass/fail. The calculated upper bounds for the inputs to erfc/gammainc functions
is showed in Tab. 6.2.

α = .001 .0025 .0040 .0055 .0070 .0085 .010

FMT 2.3268 2.1378 2.0352 1.9631 1.9070 1.8608 1.8214
FTwB 19.6262 18.2279 17.4898 16.9802 16.5888 16.2698 16.0000
RT 2.3268 2.1378 2.0352 1.9631 1.9070 1.8608 108214
LR1sT 8.1331 7.1602 6.6582 6.3168 6.0574 5.8481 5.6724
BMRT 6.96078 5.9915 5.5215 5.2030 4.9618 4.7677 4.6052
NoTMT 13.0622 11.8872 11.2726 10.8507 10.5280 10.2660 10.0451

Table 6.2: Input to erfc/gammainc in function of α.

Although the calculated input bounds have fractional values, the final hardware
counter/comparator bounds will be whole numbers. The script able to extract these
number and all the other essential scripts will be studied in sec. 6.5.

6.5 MATLAB Code
A similar calculation is performed for the other five NIST tests to reduce the com-
putation and design a lightweight implementation. I will show the essential scripts
wrote and tested by me to reach this goal.

I Each time you encounter the word entropy, it refers to the Shannon entropy
presented in sec. 2.7.

I The meaning of pass/fail bit is that the decision taken is encoded in a 1 if
the test pass with a certain confidence else it is a 0.

I Every code variable and routine is written in monospace.

All the Functions/Scripts presented are pre-commented with the following sentence:
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1% * Copyright 2012 Daniele <Daniele@TX230 >
% * This program is free software ; you can
% * redistribute it and/or modify

4% * it.
% * This program is distributed in the hope that
% * it will be useful , % * but WITHOUT ANY WARRANTY ; without even

the implied warranty of
7% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .

6.5.1 Input Functions
6.5.1.1 gi

The first function is called gi. It takes as input the parameter n, and it is able
to return:

I y: a pseudo-random input of size n bits.

I y1: its normalized sum.

% Pseudo random input generator
2% return BIT SEQUENCE y and NORMILIZED bit sequence y1

function [y, y1] = gi(n)
y = zeros (1,n);

5y1 = zeros (1,n);
for i=1:n

a = rand;
8if a > .5

y(i) = 1;
y1(i) = 1;

11else
y(i) = 0;
y1(i) = -1;

14end
end
end

6.5.1.2 PRNG2

The second function is called PRNG2. It takes as input the parameter n it is able
to return:

I ES: matrix with all possible entropy input sequence.

I ES_norm: matrix with the correspondent normalized sum vectors.

I max_en_dis: the max entropy distance between two input sequence.
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I ENT: vector containing all the entropy values of the input sequences.

% Shannon Entropy Input generator
2% when n is ODD number is impossible to reach entropy = 1

function [ES ,ES_norm ,ENT , max_en_dis ] = PRNG2 (n)
5% generating all possible entropy input depends on the size n.

% input integer must be even

8c=n;
step=floor(n/2+1);
ES = zeros(step ,n);

11ENT = zeros (0, step);
ES_norm = -1 .* ones(step ,n);

14for i=2: step
ES(i:step ,c)= 1; % matrix of all test input ES_norm (i:

step ,c) = 1; % matrix of the normalized test input
c=c -2;

17ENT(i)= entropy (ES(i ,:));
%row vector of entropy vaules of each ES line

end
20

max_en_dis = abs(ENT (2) -ENT (1));

23end

6.5.1.3 permsum2

The third input script is called permsum2. It computes all possible combination of
m numbers that summed results s. Notice that actually the script supports m=2,3,4
only.

1% This script computes all possible combination of m numbers that
summed

% results s (0 included ). Actually the script support m=2,3,4 only
clear all

4s=4;
m=2;
% compute the combination

7if m==4
i=1;
acc=zeros (1,s);

10acc (1) = 1;
while i<=s

i=i+1;
13acc(i) = acc(i -1) + i;

end
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n = sum(acc);
16

elseif m==3
acc = 1:1:s+1;

19n=sum(acc);
elseif m==2

n=s+1;
22else

error(’m can be only 2 or 3 or 4’);
end

25% Compute the n possible combination an store it in A
A = zeros(n,m);
j=1;

28a=zeros (1,m);
while j <= n

for i=1:m
31a(i)=floor ((s+1)*rand);

end
copy =0;

34if sum(a) == s

for i=1:j
37if a== A(i ,:)

copy =1;
elseif copy ==0 && i==j

40A(j ,:) = a;
j = j+1;

end
43end

end
46end

6.5.2 Output Scripts
6.5.2.1 back_envelope

This output script is called back_envelope. It takes as parameter: n that is the
bit length and the alpha step s. It generates all possible class of inputs based on en-
tropy, using PRNG2, see sec. 6.5.1.2, and reverse-test it for s different value of alpha
equally spaced btw .0010 and .0100, that is the common interval used for security
application. The back-of-envelope calculation is performed for FMT,FTwB and
RT.
The scripts creates and write a txt output files:

I out_be.txt: file that collects the results of back-of-envelope calculation, used
for the on-chip hardware implementation of the FMT,FTwB and RT.
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%The script writes matrices using the same row for different inputs
but

2%equal alpha value
clear all
n=128;

5
% decide the alpha step between .001 and .01 and create a vector of

alphas
%and confidences

8s=5;
st=abs ((.01 -.001) /(s -1));
alpha =.001: st :.01;

11al= length (alpha);
conf =100 - alpha .*100;

14% OUTPUT FILE
fid_out = fopen(’out_be .txt ’,’w’);
fprintf (fid_out , ’Analisys for :\t%d values of alpha over %d-bit

input set .\n’, s,n);
17fclose ( fid_out );

[A B] = PRNG2(n);
20

%%%%% Mono -bit
fid_out = fopen(’out_be .txt ’,’a’);

23fprintf (fid_out , ’\ nFrequency Mono -bit test .\n’);
fclose ( fid_out );
% A contains all possible class of entropy input of lenght n,

26
x_mono = zeros (1,al); % vector of thresholds
Y_mono = zeros(al ,n/2+1); %P-val monobit matrix_mono , each row

analyze an alpha
29P_mono = zeros(al ,n/2+1); %Pass monobit matrix_mono

up_mono =zeros(al ,2);
updown_mono =zeros(al ,al);

32% compute
for j=1: al
x_mono (j)= erfcinv (alpha(j)); %bound if <= x_mono test pass

35for i=1:(n/2) +1
Y_mono (j,i) = erfc(abs( sum(B(i ,:)) ) / sqrt (2*n));
if Y_mono (j,i) >= alpha(j) && abs( sum(B(i ,:)) ) <= x_mono (

j)*sqrt (2*n)
38P_mono (j,i)=1;

else
P_mono (j,i)=0;

41end
end
% Hardware reduction permits starting from an upcounter to

determine if
44%the test is passed or not , if the number of 1s in the sequence

is
% INSIDE the bounds
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[ up_mono (j ,1) ,up_mono (j ,2) ]= upcounter_FMt (n,alpha(j));
47updown_mono (j) = up_mono (j ,2) - up_mono (j ,1);

% Update outputs
fid_out = fopen(’out_be .txt ’,’a’);

50fprintf (fid_out , ’alpha =%.4f\tconf =%.2f%%\t’, alpha(j),conf(j))
;

fprintf (fid_out ,’|S|=%d\ tupcount_bounds =[%d %d]\n’, updown_mono
(j),up_mono (j ,1) ,up_mono (j ,2));

fclose ( fid_out );
53end

56
%%%%% Block: script di riferimento testblockFTB
M=8; %no multiple block possibility

59N=floor(n./M);
fid_out = fopen(’out_be .txt ’,’a’);
fprintf (fid_out , ’\ nFrequency Test within %d blocks of %d bit .\n’,N

,M);
62fclose ( fid_out );

chi_FTB =zeros(al ,n/2+1);
Y_FTB=zeros(al ,n/2+1);

65P_FTB=zeros(al ,n/2+1);
X_bl=zeros(al ,N);
c=zeros (1,al);

68for j=1: al %j is the alpha index
for k=1:n/2+1 %k input index

acc =1;
71for i=1:N

X_bl(j,i)= ( sum(A(k,acc:acc+M -1)) ./ M - .5) .^ 2;
acc = acc+M;

74end

chi_FTB (j,k) = 4 .* M .* sum(X_bl(j ,:));
77Y_FTB(j,k) = gammainc ( chi_FTB (j,k)./2, N./2, ’upper ’);

if Y_FTB(j,k) < alpha(j)
P_FTB(j,k) = 0;

80else
P_FTB(j,k) = 1;

end
83

end
% Hardware implementation part , back envelope calculation

extract chi_max
86%such that test PASS with the correspondent alpha

c(j)= chi_FTB ( j,n/2+1 - sum(P_FTB(j ,:)) + 1 );
fid_out = fopen(’out_be .txt ’,’a’);

89fprintf (fid_out , ’alpha =%.4f\tconf =%.2f%%\t’,alpha(j),conf(j));
fprintf (fid_out , ’chi_squared_max =%.4f\t’, c(j));
fprintf (fid_out , ’sum from 1 to %d of (2*#1s - %d)^2 <= %.4f\n

’, N,M, M*c(j));
92fclose ( fid_out );
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end

95
%%%%% Runs Test
tau = 2 ./ sqrt(n);

98fid_out = fopen(’out_be .txt ’,’a’);
fprintf (fid_out , ’\nRuns Test with tau =%.2f\n’,tau);
fclose ( fid_out );

101x_run=zeros (1,al);
D_run=zeros (4,al);
RT_down =zeros (1,al);

104RT_up=zeros (1,al);
for i=1: al

x_run(i)= erfcinv (alpha(i));
107D_run (1,i)= (( x_run(i)*2* sqrt (2*n)+2*n) * up_mono (j ,1) *(n-

up_mono (j ,1)) ...
/n^2); %less or equal lower bound

D_run (2,i)= (( x_run(i)*2* sqrt (2*n)+2*n) * up_mono (j ,2) *(n-
up_mono (j ,2)) ...

110/n^2); %less or equal upper bound
D_run (3,i)= ((- x_run(i)*2* sqrt (2*n)+2*n) * up_mono (j ,1) *(n-

up_mono (j ,1)) ...
/n^2); % greater or equal lower bound

113D_run (4,i)= ((- x_run(i)*2* sqrt (2*n)+2*n) * up_mono (j ,2) *(n-
up_mono (j ,2)) ...
/n^2); % greater or equal upper bound

RT_up(i)=floor(D_run (1,i));
116RT_down (i)=ceil(D_run (3,i));

fid_out = fopen(’out_be .txt ’,’a’);
fprintf (fid_out , ’alpha =%.4f\t%.4f\t%.4f\t%.4f\t%.4f\t’,alpha(i

),D_run (:,i));
119fprintf (fid_out , ’--> RT bound =[%d %d]\n’, RT_down (i),RT_up(i))

;
fclose ( fid_out );

end
122

%%%%% Final Comments
%this code is NOT parallelized

Daniele Antonioli 99



Chapter 6 Hardware Implementation of Reduced NIST SP800-22

E.g. output file for n=128 and s=5
Analysis for: 5 values of alpha over 128-bit input set.
Frequency Mono-bit test.
alpha=0.0010 conf=99.90% |S|=36 upcount_bounds=[46 82]
alpha=0.0033 conf=99.67% |S|=32 upcount_bounds=[48 80]
alpha=0.0055 conf=99.45% |S|=30 upcount_bounds=[49 79]
alpha=0.0077 conf=99.22% |S|=30 upcount_bounds=[49 79]
alpha=0.0100 conf=99.00% |S|=28 upcount_bounds=[50 78]
Frequency Test within 16 blocks of 8 bit.
alpha=0.0010 conf=99.90% chi_squared_max=36.5000 sum from 1 to 16 of (2*#1s
- 8)^2 <= 292.0000
alpha=0.0033 conf=99.67% chi_squared_max=34.0000 sum from 1 to 16 of (2*#1s
- 8)^2 <= 272.0000
alpha=0.0055 conf=99.45% chi_squared_max=32.5000 sum from 1 to 16 of (2*#1s
- 8)^2 <= 260.0000
alpha=0.0077 conf=99.22% chi_squared_max=32.5000 sum from 1 to 16 of (2*#1s
- 8)^2 <= 260.0000
alpha=0.0100 conf=99.00% chi_squared_max=28.5000 sum from 1 to 16 of (2*#1s
- 8)^2 <= 228.0000
Runs Test with tau=0.18
alpha=0.0010 78.6608 78.6608 43.2142 43.2142 –> RT bound=[44 78]
alpha=0.0033 76.7892 76.7892 45.0858 45.0858 –> RT bound=[46 76]
alpha=0.0055 75.8905 75.8905 45.9845 45.9845 –> RT bound=[46 75]
alpha=0.0077 75.2796 75.2796 46.5954 46.5954 –> RT bound=[47 75]
alpha=0.0100 74.8113 74.8113 47.0637 47.0637 –> RT bound=[48 74]

6.5.2.2 BMRT342_3

This output script is called BMRT342_3. It implements the BMRT in the case of
alpha=.01, M=Q=3 and n=342. The parameter sim dictates the number of simulation
performed, each simulation test a pseudo-random input generated by gi function,
see sec. 6.5.1.1. The rank computation is performed using the built-in MATLAB
function rank.
The scripts creates and writes into two txt files

I in_BMRT342_3: file that contains all inputs divided in row

I out_BMRT342_3: file that contains pass/fail bit for all sim value.

% This script simulate Binary rank test in the specific case of M=Q
=3 and

2% n equal to 342 bits
clear all
%%%%% Initialization

5n=342; %n must be >= 38MQ
alpha =.01;
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sim =10;
8p = zeros (1, sim);

M=3;
Q=3;

11N=floor(n/(M*Q)); %in this case is 38
% For each M=Q three probabilities must be computed following the

general formula
% the number after a indicate the M value

14%a32 = [.288788 , .577576 , .128350];
a3 = [.328125 , .57421875 , .095703125];
%a4 = [.3076171875 , .5767822265625 , .112152099609375];

17%INPUT FILE
fid_in = fopen(’ in_BMRT342_3 .txt ’,’w’);
fprintf (fid_in , ’INPUT :\t%d samples of %d bits\t%dx%d matrices \n\n

’,sim , n, M, Q);
20fclose ( fid_in );

% OUTPUT FILE
fid_out = fopen(’ out_BMRT342_3 .txt ’,’w’);

23fprintf (fid_out , ’OUTPUT :\t%d samples of %d bits\t%dx%d matrices .\n
’, sim ,n,M,Q);

fprintf (fid_out , ’\n1 means test passed with %.2f%% confidence \t’,
100- alpha *100);

fprintf (fid_out , ’alpha = %.2f.’, alpha);
26fprintf (fid_out , ’\nEach row is a test result for a different input

.\n\n’);
fclose ( fid_out );

29%%%%% Compute
gg =1;
while gg <= sim

32a=gi(n); % generate a pseudorandom input
fid_in = fopen(’ in_BMRT342_3 .txt ’,’a’);
fprintf (fid_in , ’%d ’, a);

35fprintf (fid_in , ’\n’);
fclose ( fid_in );
% notice that this test discard n-N*Q*M bits

38cr = zeros (1 ,3); % vector that count the ranks cr (1) counts the full
ranks

% generate the rank vector of N MbyQ matrix
41s=0;

R(1) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

44R(2) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(3) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

47s=s+9;
R(4) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

50R(5) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(6) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
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53s=s+9;
R(7) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

56R(8) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(9) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

59s=s+9;
R(10) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

62
R(11) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

65R(12) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(13) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

68s=s+9;
R(14) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

71R(15) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(16) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

74s=s+9;
R(17) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

77R(18) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(19) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

80s=s+9;
R(20) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

83
R(21) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

86R(22) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(23) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

89s=s+9;
R(24) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

92R(25) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(26) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

95s=s+9;
R(27) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

98R(28) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(29) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

101s=s+9;
R(30) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

104
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R(31) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

107R(32) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(33) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

110s=s+9;
R(34) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

113R(35) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;
R(36) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);

116s=s+9;
R(37) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

119R(38) = rank ([a(1+s:3+s);a(4+s:6+s);a(7+s:9+s)]);
s=s+9;

122%A2 = [a (10:12) ;a (13:15) ;a (16:18) ];

%loop to count the rank type , probably it is more efficient to make
an if

125%after each R formation
for i=1:N

if R(i) == M
128cr (1)=cr (1) +1; %full rank matrix

elseif R(i) == M-1
cr (2)=cr (2) +1;

131else
cr (3)=cr (3) +1;

end
134end

137chi = (cr (1) - a3 (1)*N)^2 / (a3 (1)*N) + (cr (2) - a3 (2)*N)^2 / (a3
(2)*N) + ...
(cr (3) - a3 (3)*N)^2 / (a3 (3)*N);

140%y = gammainc (chi /2,1,’upper ’ );
y = exp(-chi /2);

143if y >= alpha
p = 1;

else
146p = 0;

end
%Print the content in outputs128 .txt

149fid_out = fopen(’ out_BMRT342_3 .txt ’,’a’);
fprintf (fid_out , ’%d\t’, p);
fprintf (fid_out , ’\n’);

152fclose ( fid_out );
% Increment for the next input
gg=gg +1;
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155end

6.5.2.3 TLROB_stat

This output script is called TLROB_stat. It implements the reverse LR1sT for M=8.
It uses the permsum2 script, see sec. 6.5.1.3, to compute all the possible combination
of 4 numbers that sums 16, zero included. Notice that the resultant matrix is a
969x4, it is loaded inside the script and used for computation.
The scripts returns:

I R: matrix where each row contains results for a certain input:

• The first column contains the P-val.
• The second column contains the pass/fail bit.
• The other four columns contain the correspondent quadruplet in input.

1% Reverse the reduced TLROB M=8
% Matrix A is generated using permsum2 script
% the is loaded . A contains all possible combination of 4 numbers

that
4% sums 16, zero included that are 969 rows

clear all
load (’4 number that sum 16. mat ’)

7
n=128;
M=8;

10N=floor(n/M);
K=3;
c = [ .2148 .3672 .2305 .1875 ];

13alpha =.01;
F=zeros( length (A(: ,1)),K+1);
chi_obs =zeros( length (A(: ,1)) , 1 );

16y=zeros( length (A(: ,1)) , 1 );
fault=ones( length (A(: ,1)) ,1 );

19for j=1: length (A(: ,1))
for i=1:K+1
F(j,i) = ( A(j,i) - N.*c(i) ).^2 ./ (N .* c(i) );

22end
% compute the statistic
chi_obs (j ,1) = sum(F(j ,:));

25
% compute the incomplete gamma function
y(j ,1) = gammainc ( chi_obs (j)./2,K./2,’ upper ’);

28if y(j ,1) < alpha
fault(j ,1) =0;

end
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31end

R(: ,1)=y;
34R(: ,2)=fault;

R(: ,3:6)=cast(A,’uint8 ’);
37

%Each row is a test for a particular input. The first column
contains all

%P- values the second contains a 1 if the P-value is >= alpha and
the last

40%4 columns are all the possible input combination ofr n=128 , namely
all

%the possible 4 numbers , 0 included , that sum gives 16.

6.5.2.4 NoTMt3

This output script is called NoTMt3. It is able to generate sim pseudo-random
input of n=512 bit an test it for m=9 bit entropy classified templates, using PRNG2
function, see sec. 6.5.1.2. Each template gives a P-value and a pass/fail bit.
The scripts creates and writes into two txt files:

I in_no512_9: file that contains all inputs divided in row

I out_no512_9: file that contains the list of all tested templates and a sim x
m matrix where each column is the pass/fail bit for a certain template and a
summary section where they are showed the percentages.

1clear all
% script able to generate sim pseudo - random input of n bit an test

it for all
% possible m bit templates and/or entropy classified templates .

4%each template gives a P-value

%%%%% Initialization
7n = 512;

alpha = .01;
sim =128;

10% generate templates
m = 9; %NIST recommend 9,10 tem lenght . With m=9 I will generate 5

templates
Q = PRNG2(m); %

13%Q = all_input (m);
N = 8;
M = floor(n/N);

16mu = (M-m+1) / 2^m;
var = M * ( 1/2^m - (2*m -1) /2^(2* m) );
% Generate Pass Matrix
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19P = zeros(sim , length (Q(: ,2)));

%INPUT FILE
22fid_in = fopen(’ in_no512_9 .txt ’,’w’);

fprintf (fid_in , ’INPUT :\t%d samples of %d bits\n\n’,sim , n);
fclose ( fid_in );

25% OUTPUT FILE
fid_out = fopen(’ out_no512_9 .txt ’,’w’);
fprintf (fid_out , ’OUTPUT :\t%d samples of %d bits .\n’, sim ,n);

28fprintf (fid_out , ’\nList of %d-bit used templates :\n’,m);
fprintf (fid_out , ’%d %d %d %d %d %d %d %d %d\n’,Q ’);
fprintf (fid_out , ’\nEach sample provides %d P-values ’, length (Q(: ,2)

));
31fprintf (fid_out , ’\n1 means test passed with %.2f%% confidence \t’,

100- alpha *100);
fprintf (fid_out , ’alpha = %.2f.’, alpha);
fprintf (fid_out , ’\ nColumn order :(1) First temp\t(2) Second temp\t’);

34fprintf (fid_out , ’...\ tLast temp\n\n’);
fclose ( fid_out );

37%%%%% Provide sim inputs of n bits
load rep512

40%%%%% Compute
gg =1;
while gg <= sim

43%a = gi(n); % generate a pseudo - random input
a = cc(gg ,:);
% initialize local variables

46W = zeros( length (Q(: ,2)),N);
C = zeros( length (Q(: ,2)),N);
y = zeros (1, length (Q(: ,2)));

49p = zeros (1, length (Q(: ,2)));
chi_obs = zeros (1, length (Q(: ,2)));
%save the input in row in in_no512_9 .txt

52fid_in = fopen(’ in_no512_9 .txt ’,’a’);
fprintf (fid_in , ’%d ’, a);
fprintf (fid_in , ’\n’);

55fclose ( fid_in );
%for each block control a template

for k=1: length (Q(: ,2)) %test all possible entropy input
58%first block outside the loop because of shift problem

ii = 1;
while ii <= M-m+1

61if (a(ii:ii+m -1) == Q(k ,:))
W(k ,1) = W(k ,1) + 1;
ii = ii + m;

64else
ii = ii + 1;

end
67

end
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C(k ,1) = (W(k ,1) -mu)^2;
70

shift = M;
for i=2:N

73%scan a block
j = 1;
while j <= M-m+1 % maximum iteration possible

76if (a(j+shift:j+shift +m -1) == Q(k ,:))
W(k,i) = W(k,i) + 1;
% raws identifies the template number and colums

the block number
79j = j + m;

else
j = j + 1;

82
end

85end
C(k,i) = (W(k,i)-mu)^2;
shift = shift + M;

88end
% compute the P-value for the k templates
chi_obs (k) = sum(C(k ,:))/var;

91y(k) = gammainc ( chi_obs (k)/2, N/2, ’upper ’);
if y(k) < alpha

p(k)=0;
94else

p(k)=1;
end

97
end

%Print the content in outputs128 .txt
100fid_out = fopen(’ out_no512_9 .txt ’,’a’);

fprintf (fid_out , ’%d\t’, p);
fprintf (fid_out , ’\n’);

103fclose ( fid_out );
% Increment for the next input
P(gg ,:)=p;

106gg=gg +1;
end

109%Write RESULTS SUMMARY
fid_out = fopen(’ out_no512_9 .txt ’,’a’);
fprintf (fid_out , ’\n’);

112fprintf (fid_out , ’RESULTS SUMMARY : %d samples of %d-bit alpha =%.4f
confidence %.2f%%.\n’, sim ,n,alpha ,100 - alpha *100);

fprintf (fid_out , ’Testing %d templates of %d-bit .\n\n’, length (Q
(: ,2)),m);

for i=1: length (Q(: ,2))
115fprintf (fid_out , ’NonOver Temp #%d:[%d %d %d %d %d %d %d %d %d

]’, i,Q(i ,:));
fprintf (fid_out , ’\t%d pass over %d\tperc: %%%.4f\n’, sum(P(:,i
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)),sim ,sum(P(:,i)) / sim * 100 );
end

118% fprintf (fid_out , ’Sequences that pass all the test ’);
fclose ( fid_out );

121%%%%%% GENERAL COMMENTS
%the output file generated provides a P-value for each templates in
% columns . So one row identifies the result of a single input with

multiple
124% templates tested .

% sim time with this config 5 min
% code can be optimized avoiding the declaration of local variables

E.g. output file for n=512, m=9, sim=128
OUTPUT: 128 samples of 512 bits.
List of 9-bit used templates:
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0 1
Each sample provides 5 P-values
1 means test passed with 99.00% confidence alpha = 0.01.
Column order:(1)First temp (2)Second temp ... Last temp
1 1 1 1 1
1 1 1 1 1
..............
for reason of space I need to hide some results
..............
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
RESULTS SUMMARY: 128 samples of 512-bit alpha=0.0100 confidence 99.00%.
Testing 5 templates of 9-bit.
NonOver Temp#1:[0 0 0 0 0 0 0 0 0] 128 pass over 128 perc: %100.0000
NonOver Temp#2:[0 0 0 0 0 0 0 0 1] 128 pass over 128 perc: %100.0000
NonOver Temp#3:[0 0 0 0 0 0 1 0 1] 128 pass over 128 perc: %100.0000
NonOver Temp#4:[0 0 0 0 1 0 1 0 1] 128 pass over 128 perc: %100.0000
NonOver Temp#5:[0 0 1 0 1 0 1 0 1] 125 pass over 128 perc: %97.6563

6.5.2.5 intelHS

This output script is called intelHS. It is able to generate sim pseudo-random in-
put of n=256 bit an test the frequency of six pre-defined patterns using the empirical
law by Intel showed in Tab. 3.1.
The scripts creates and writes into two txt files:
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I in_intel: file that contains all inputs divided in row.

I out_intel: file that contains the list of all tested templates and a sim x 6
matrix where each column is the pass/fail bit for a certain template and a
summary section where are showed the percentages.

%%%% Intel health and sweelness test
2

%%%%% Initiali
clear all

5close all
n=256; %value fixed by Intel
sim = 256;

8P = zeros(sim ,6); % results matrix

%INPUT FILE
11fid_in = fopen(’ in_intel .txt ’,’w’);

fprintf (fid_in , ’INPUT :\t%d samples of %d bits\n\n\n’,sim , n);
fclose ( fid_in );

14% OUTPUT FILE
fid_out = fopen(’ out_intel .txt ’,’w’);
fprintf (fid_out , ’OUTPUT :\t%d samples of %d bits .\t’, sim ,n);

17fprintf (fid_out , ’1 means test passed with %.2f%% confidence \t’,
99);

fprintf (fid_out , ’alpha = %.2f.’, 0.01);
fprintf (fid_out , ’\ nColumn order :(1) [1] (2) [01] ’);

20fprintf (fid_out , ’(3) [010] (4) [0110] (5) [101] (6) [1001]\ n\n
’);

fclose ( fid_out );

23%%%%% Provide some input and load it into v()
load rep4
v=cc;

26%a=zeros (1,n);
% for i=1: sim
% v(i ,:)= %some loaded file

29% end
%%%%% compute

gg =1;
32while gg <= sim

a=v(gg ,:);
fid_in = fopen(’ in_intel .txt ’,’a’);

35fprintf (fid_in , ’%d ’, a);
fprintf (fid_in , ’\n’);
fclose ( fid_in );

38c=zeros (1 ,6); % counting vector
p=zeros (1 ,6); %pass of fail vector

41%1 bit template
c(1)=sum(a);
if c(1) > 109 && c(1) < 165
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44p(1) = 1; %no else because initialized at 0
end

47%2 bits templates
t2 = [0 1];
for i=1:n-1

50if a(i:i+1) == t2
c(2)=c(2) +1;

end
53end

if c(2) > 46 && c(2) < 84
p(2) = 1;

56end

%3 bits templates
59t3 = [0 1 0];

t5 = [1 0 1];
for i=1:n-2

62if a(i:i+2) == t3
c(3)= c(3) + 1;

end
65

if a(i:i+2) == t5
c(5) = c(5) + 1;

68end
end
if c(3) > 8 && c(3) < 58

71p(3) =1;
end
if c(5) > 8 && c(5) < 58

74p(5) =1;
end

77%4 bits templates
t4 = [0 1 1 0];
t6 = [1 0 0 1];

80for i=1:n-3
if a(i:i+3) == t4

c(4)= c(4) + 1;
83end

if a(i:i+3) == t6
86c(6) = c(6) + 1;

end
end

89if c(4) > 2 && c(4) < 35
p(4) =1;

end
92if c(6) > 2 && c(6) < 35

p(6) =1;
end

95P(gg ,:)=p;
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%Print the results in a output file
fid_out = fopen(’ out_intel .txt ’,’a’);

98fprintf (fid_out , ’%d\t’, p);
fprintf (fid_out , ’\n’);
fclose ( fid_out );

101gg = gg +1;
end

104%Write RESULTS SUMMARY
fid_out = fopen(’ out_intel .txt ’,’a’);
fprintf (fid_out , ’\n’);

107fprintf (fid_out , ’RESULTS SUMMARY : %d samples of %d-bit alpha
=0.0100 confidence 99.00%%.\n’, sim ,n);

fprintf (fid_out , ’[1] pattern \t%d pass over %d\tperc: %%%.4f\n’,
sum(P(: ,1)),sim ,sum(P(: ,1)) / sim * 100 );

fprintf (fid_out , ’[01] pattern \t%d pass over %d\tperc: %%%.4f\n’,
sum(P(: ,2)),sim ,sum(P(: ,2)) / sim * 100 );

110fprintf (fid_out , ’[010] pattern \t%d pass over %d\tperc: %%%.4f\n’,
sum(P(: ,3)),sim ,sum(P(: ,3)) / sim * 100 );

fprintf (fid_out , ’[0110] pattern \t%d pass over %d\tperc: %%%.4f\n’,
sum(P(: ,4)),sim ,sum(P(: ,4)) / sim * 100 );

fprintf (fid_out , ’[101] pattern \t%d pass over %d\tperc: %%%.4f\n’,
sum(P(: ,5)),sim ,sum(P(: ,5)) / sim * 100 );

113fprintf (fid_out , ’[1001] pattern \t%d pass over %d\tperc: %%%.4f\n’,
sum(P(: ,6)),sim ,sum(P(: ,6)) / sim * 100 );

% fprintf (fid_out , ’Sequences that pass all the test ’);
fclose ( fid_out );

116
%this code can be parallelized in a single while
% it seems that using Pseudorandom input always pass all the tests ,

119% weakness of Intel RNG ????
% alpha is implicitly set at .01
% a sample is healthy if passes all the template counting

122% Intel scans the last 256 256- bit samples , if at least 128 samples
are

% healthy then the ES is in a SWELL state
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E.g. output file for n=256, sim=256
OUTPUT: 256 samples of 256 bits. 1 means test passed with 99.00% confidence
alpha = 0.01.
Column order:(1) [1] (2) [01] (3) [010] (4) [0110] (5) [101] (6) [1001]
1 1 1 1 1 1
1 1 1 1 1 1
..............
for reason of space I need to hide some results
..............
1 1 1 1 1 1
0 1 1 1 1 1
RESULTS SUMMARY: 256 samples of 256-bit alpha=0.0100 confidence 99.00%.
[1] pattern 205 pass over 256 perc: %80.0781
[01] pattern 256 pass over 256 perc: %100.0000
[010] pattern 256 pass over 256 perc: %100.0000
[0110] pattern 256 pass over 256 perc: %100.0000
[101] pattern 256 pass over 256 perc: %100.0000
[1001] pattern 255 pass over 256 perc: %99.6094

6.5.2.6 arginv

This output script is called arginv. Given the bit length n, the block length M
and the alpha step s, the script is able to generate :

I X: 6 x s matrix containing all the threshold values for different alpha values.
Notice that this script was used to fill Tab. 6.2.

% Script that computes the arg of 6 light tests
2clear all

nt =6; % number of tests implemented
% Monobit , Block , Run

5n=128;
M=8; %Block
N=floor(n/M);

8K=3;
%Non overlapping and Binary Matrix
nn =512;

11m=9;
NN =8;
MM=floor(nn/NN);

14mu = (MM -m+1) / 2^m;
var = MM * ( 1/2^m - (2*m -1) /2^(2* m) );
% decide the alpha step between .001 and .01 and create a vector of

alphas
17%and confidences

s=7;
st=abs ((.01 -.001) /(s -1));

20alpha =.001: st :.01;
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al= length (alpha);
conf =100 - alpha .*100;

23
x = zeros(nt ,al); % vector of thresholds
s = zeros(nt ,al);

26
for j=1: al

29%Input
x(1,j) = erfcinv (alpha(j)); % Monobit
x(2,j) = gammaincinv (alpha(j), N./2, ’upper ’); %Block

32x(3,j) = erfcinv (alpha(j)); %Run Test
x(4,j) = gammaincinv (alpha(j), K/2, ’upper ’); % Longest Run of

ones
x(5,j) = gammaincinv (alpha(j),NN/2,’upper ’ ); %Non Overlapping

35x(6,j) = gammaincinv (alpha(j) ,1,’upper ’ ); % Binary
% Computed statistics

% s(1,j) = sqrt (2) .* erfcinv (alpha(j)); % Monobit
38% s(2,j) = 2 .* gammaincinv (alpha(j), N./2, ’upper ’); %Block

% s(5,j) = 2 * gammaincinv (alpha(j),NN/2,’upper ’ );
% s(6,j) = 2 * gammaincinv (alpha(j) ,1,’upper ’ );

41
end

44x(nt +1 ,:)=alpha;

6.6 Logic Implementation and Results

The lightweight implementation for reduced NIST test suite ( six tests) was design in
Verilog, and verified for functionality using ModelSim. The designs were synthesized
in Synopsys Design Compiler using 45 nm SOI NCSU/OSU Open Source Standard
Cell Library. The synthesized designs were optimized for a cycle time of .5 ns (2
GHz).

The area and power numbers for each 128 bit test are shown in 6.3a and 6.3b
respectively:
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(a) Synthesized Area µm2.

(b) Active and Leakage power mW.

Figure 6.3: Area and Power.

The synthesized area ranges from 240 µm2 to 460 µm2 for each test. The shared
control logic and counters reduce the overall implementation area. The common
counter and control logic consume an area of around 200 µm2, resulting the overall
NIST module area of 1926 µm2. This translates to 1026 NAND gates equivalent in
45 nm technology.
The active power for each test is of the order of 0.4 mW to 0.8 mW. All the tests

are designed to operate in parallel, resulting in a overall active power of 3.75 mW
for the NIST module operating at 2GHz. The overall cell leakage is ∼ 10.5 µW
which is 0.28% of the total power. Since the target applications include passively
powered and battery operated devices, like RFIDs and smart cards, energy/bit is an
important metric. The 128-bit reduced NIST module operating on 2Gbps consumes
1.87 pJ/bit.
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The proposed implementation is scalable to larger number of bit sample as well.
Depending on the number of bits n and block sizes, the bounds for each test varies.
BMRT and NoTMT are implemented with a minimum bit sample size greater that
512 bits. The optimized tests can be scaled for larger bit sequence range at the cost
of increased area and power. The area, power and energy/bit for 256-bit and 512-bit
implementations are showed in Tab. 6.3:

Table 6.3: 256 and 512 bit implementations (45 nm tech).

Bit lengths 256 bits 512 bits
Area µm2 2394 2787
Power mW 4.03 4.37

Energy/bit @ 2Gbps pJ/bit 2.01 2.18

6.7 Conclusions and Future Work
A lightweight implementation of reduced set of NIST randomness test suite is pro-
posed in this work. The implementation of the six NIST tests is based on optimized
calculations to bypass the computation intensive erfc and gammainc functions. The
back-of-envelope calculation permits to determine the pass/fail bit directly using
the argument of the complex functions, avoiding their computations. The resource-
intensive statistical tests are converted to a series of count, add and compare oper-
ations, implemented using combinatorial logic. The design is further optimized for
a fixed bit sample size and share global counters and control signals. A partial re-
configuration feature allows the critical value to be changed in the form of modified
bounds for each test. The tests operate serially on each incoming bit from the RNG,
thereby avoiding additional hardware for storage. The design for 128-bit tests has
a synthesized area of 1926 µm2, for an optimized cycle time of 0.5 ns. The six tests
operate in parallel, consuming an active power of 3.75 mW and leakage power of
10.5 µW.
As a part of future work, we propose to explore lightweight implementation of

other statistical tests from NIST and DIEHARD test suites, e.g. CST, and expand
to second level tests for analyzing the distribution of P-vals.
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Conclusions
In chapter 1 I introduced the foundations of RNG. True randomness versus Pseudo
randomness. The basic block scheme of a TRNG, defining the concept of ES, EH
and DPP, with some examples. The common metrics used to evaluate a security IC.
In chapter 2 I introduced the basic list of tools to threat randomness. Ther-

mal Noise modeling. Fourier transformation. Elements of Probability Theory and
Stochastic Process. The Quantization process. The Gaussian statistics. The ab-
stract definition of entropy in Information Theory sense and the definition of Ham-
ming Distance. The statement of the CLT and one particular case: de Moivre-
Laplace Thm. . The Pearson’s Chi-Squared test.
In chapter 3 I explained some examples of RNG implementation from an archi-

tectural point of view. The analog ADC pipeline that exploit chaos used both
for random number generation and analog-to-digital signal conversion. The digital
SRAM cells used in metastable state each power-up for random number genera-
tion and fingerprint extraction. The Intel RNG a.k.a. Bull Mountain integrated in
the third gen processors (Ivy Bridge) used as a dedicated, scalable (atomic instruc-
tion) and high security RNG. Some examples of open-source TRNGs: HotBits and
LavaRnd. The most famous PRNG example: Rule 30 of Wolfram’s CAs, used in
for pseudo-random number generation in Mathematica.
In chapter 4 I explained how to math model and evaluate some RNG implementa-

tion. The analog chaotic ADC modeled by Markovian SP, namely Piece-Wise Affine
Markov maps. The digital metastable SRAM cell that exploits FERNS method and
the intrinsic process variations that affect its performance. The random number
generation mechanism in the Bull Mountain RNG: failure modes, OHT unit, BIST
and DPP algorithm.
In chapter 5 I introduced the testing methodologies for RNG. The most famous fail

in the history of encryption: cracking DES, OpenSSL and ECDSA. The Statistical
Test as basic block for RNG evaluation: scheme, critical value, null hypothesis,
related errors and confidence. RNG test suites: DIEHARD, dieharder and NIST SP
800-22. Focus on NIST SP 800-22: erfc based class E and Chi-Square based class
C tests. Summary of all NHs and flowcharts for FMT, FTwB, RT, LR1sT, BMRT,
NoTMT, OTMT, CST.
In chapter 6 I showed the work made in Oct-Dec 2012 for the publication of

the paper titled: “On-chip Lightweight Implementation of Reduced NIST
Randomness Test Suite [32]" at UMass College (MA), that is the core of my
thesis work.
The abstract summarized the paper. The motivations underline why we have

made this on-chip test module. The reduction part explains how we work on the
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software to fully-hardware conversion of the test suite. The FTwB lightweight im-
plementation is used as a general example to understand in the details all the steps
we made and which is the hack that we used. The MATLAB code section, focus on
my personal work and explains the basic script used to reach the goal. The input
functions and the outputs scripts are used to compute threshold values useful in the
hardware implementation. The logic implementation part describes the main steps
for the realization of the on-chip test module and shows the results in terms of area,
throughput, power and energy/bit. The conclusion part review the proposed work,
and propose new features and challenges for future works.
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Nomenclature
ADC Analog to Digital Converter

AES Advanced Encryption Standard

AT-and-T American Telephone and Telegraph

AWGN Additive White Gaussian Noise

BIST Built-In-Self-Test

c-t continous-time

CA Cellular Automata

CCD Charge-Coupled Device

CDF Cummulative Distribution Function

CEP buffer Conditioned Entropy Pool buffer

CLT Central Limit Theorem

CMOS Complementary Metal-Oxide-Semiconductor

CRC Cyclic Redundancy Check

CRI Cryptography Research, Inc.

CSPRNG Criptographically Secure Pseudo Random Number Generator

CTF Channel Transfer Function

d-t discrete-time

Das Digitized analog signal

DDP Digital Post Processing

DFT Discrete Fourier Transform

DoS Denial of service

129



Nomenclature

DRBG Deteministic Random Bit Generator

DSA Digital Signature Algorithm

DSM Deep SubMicron

DSM Deep-SubMicron

ECDSA Elliptic Curve DSA

EFF Electronic Frontier Foundation

EHC Entropy Harvesting Circuit

ES Entropy Source

FERNS Fingerprint Extraction and Random Numbers in SRAM

FIPS Federal Information Processing Standard

FPGA Field-Programmable Gate Array

GCD Greatest Common Divisor

GSP Gaussian Stochastic Process

HCI Hot Carrier Injection

IC Integrated Circuit

IDFT Inverse Discrete Fourier Transform

Iff If and only if

IID Independent Identically(Uniformly) Distributed

LFSR Linear Feedback Shift Register

MGF Moment Generating Function

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

NBTI Negative Bias Temperature Instability

NBTI Negative Bias Temperature Instability

NCSU North Caroline State University

NKS New Kind of Science
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Nomenclature

NSA National Security Agency (US)

OHT unit Online Health Test unit

OSTE queues Online Self-Tested Entropy queues

PDF Probability Distribution Function

PDK Process Design Kit

PDS Power Density Spectrum

PGP alg Pretty Good Privacy algorithm

PhRNG Physical Random Number Generator

PRNG Pseudo Random Number Generator

PVT Process-Voltage-Temperature

QoS Quality of Service

RSA Rivest Shamir Adleman

RV Random Variable

SHT Statistical Hypothesis Testing

SNM Static Noise Margin

SNR Signal to Noise Ratio

SoC System on a Chip

SP Stochastic Process

SRAM Static Random Access Memory

ST Statistical Testing

TRNG True Random Number Generator

UMC United Microelectronics Corporation

VLSI Very-Large-Scale Integration

VTCs Voltage Transfer Curves

WGN White Gaussian Noise

wrt with respect to
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