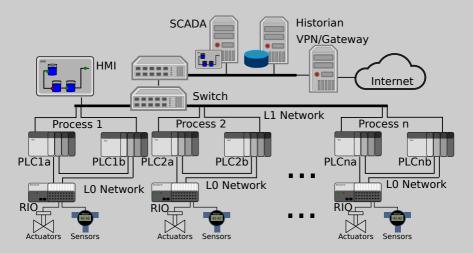


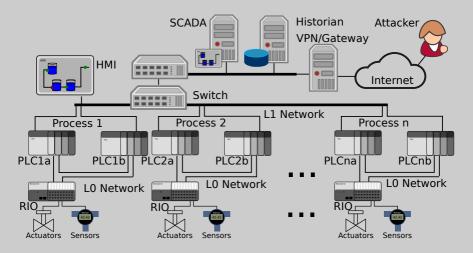
CPS-SPC 16 @ Vienna AU

Towards High-Interaction Virtual ICS Honeypots-in-a-Box

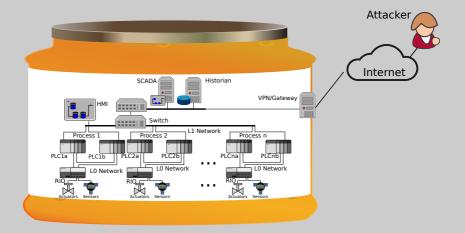
DANIELE ANTONIOLI ANAND AGRAWAL N. O. TIPPENHAUER

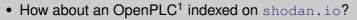

In this work we:

- · Present the design of a realistic ICS honeypot
 - Satisfying traditional, and ICS requirements
 - That is high-interaction, virtualized and low-cost
- · Show an implementation of such a design
 - Targeting ICS based on Ethernet/IP
 - High-interaction without full virtualization
 - Compatible with Software-Defined Networking
- Discuss its evaluation
 - S3's Capture-The-Flag (CTF) for ICS



- Industrial Control Systems (ICS)
 - Connected devices, managing an industrial process
 - Control and monitor: PLC, SCADA, HMI
 - Physical: sensors, actuators
 - Cyber: switches, routers, gateways
- ICS security is a major challenge
 - Internet-facing control networks
 - Cyber and physical attacker surface
 - Legacy-code, uncertified devices

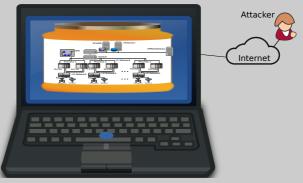



- Systems intended be probed, attacked, and compromised
 - Lures the attacker impersonating an ICS
 - Stop, or slow-down the attack
 - Study attacker's behaviours
- Classifications
 - Infrastructure: real vs. virtual (vs. hybrid)
 - Realism: low-interaction vs. high-interaction
 - Role: client vs. server
 - Usage: research vs. production

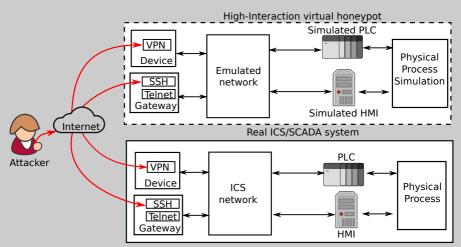
- Assumptions
 - Honeypot reached over the Internet
 - Vulnerable interface determines the attacker surface
- Capabilities
 - Fingerprinting: addresses, ports, protocol
 - Protocols: knowledge of all protocols used in system
 - Physical system: limited knowledge of process and devices
- Interactions
 - Denial-of-Service: flood the network
 - Man-in-the-Middle: passive and active
 - Device impersonation: valid and malformed packets
 - Sabotage: trigger actions through malicious commands

- High-interaction ICS honeypot
 - Simulate the physical process
 - Simulate the ICS devices: control logic, services
 - Emulate the network infrastructure
- Low-cost
 - Reconfigurable
 - Scales
- ICS requirements
 - Time: completion of tasks, and delivery of packets
 - Determinism: schedule of tasks, and order of packets

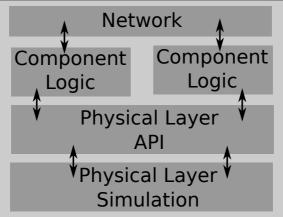
- Classification: real, low-interaction, server
- Pros: low-cost, configuration
- Cons: realism, scale



¹http://www.openplcproject.com/

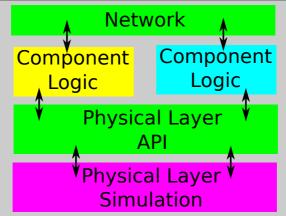

Our Honeypot: Design Choices

- Virtual and high-interaction:
 - Simulation of physical process and ICS devices
 - Lightweight network emulation
 - Runs in-a-Box (with SDN support)
- ICS requirements
 - Time: real-time emulation, and simulation
 - Determinism: scriptable environment



Proposed Honeypot (top) vs. Real ICS (bottom).

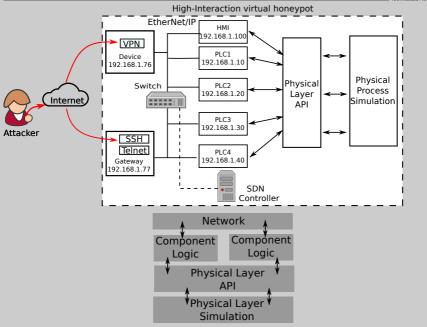
MiniCPS Framework [CPS-SPC 15]



"MiniCPS: A toolkit for security research on CPS Networks." https://github.com/scy-phy/minicps

- (C)yber \rightarrow Network Emulator
- $(\mathsf{P}) hysical \quad \rightarrow \mathsf{P} hysical \ \mathsf{Layer} \ \mathsf{Simulation} \ \mathsf{and} \ \mathsf{API}$
- (S)ystem \rightarrow Devices Simulation

MiniCPS Framework [CPS-SPC 15]

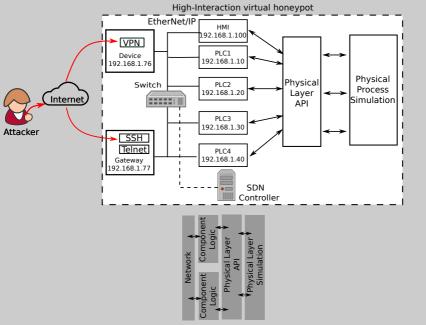


"MiniCPS: A toolkit for security research on CPS Networks."

https://github.com/scy-phy/minicps

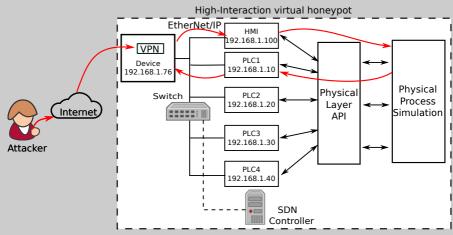
- (C)yber \rightarrow Network Emulator
- (P)hysical \rightarrow Physical Layer Simulation and API
- (S)ystem \rightarrow Devices Simulation

Honeypot Implementation



daniele_antonioli@sutd.edu.sg

Towards High-Interaction Virtual ICS Honeypots-in-a-Box


Honeypot Implementation

14

Attack propagates over the simulated components

- Same IP, MAC, and netmask
- Simulated control logic (modifiable in real-time)
- Ethernet/IP server on port 44818, and client
- Same monitoring Webserver

Rockwell Automation - Mozilla Firefox File Edit View History Bookmarks Tools Help									- + ×	
Rockwell Automation	× +									
(*) 192.168.1.10:5000		C Q Search	☆	Ê		+	Â	>>	≡	
Allen-Bradley 1756-EN2T/D				Rockwell Automation						
Expand Minimize	Home									
Diagnostics	Device Name	1756-EN2T/D								
Browse Chassis	Device Description									
	Device Location				Resour					
	Ethernet Address (MAC)	00:1D:9C:C7:B0:70			Visit AB.com for additional information					
	IP Address	192.168.1.10								
	Product Revision	10.007 Build 113011600			Contact					
	Firmware Version Date	May 23 2014, 17:45:10								
	Serial Number	00B36930								
	Status	Run								
	Uptime	01 days 00h:01m:21s								
www.ab.com	Copyright © 2009 Rockwell Autom	nation, Inc. All Rights Reserved.								

Moxa OnCell IP gateway

- Eg: provide IP over 3G connection
- SSH server with default credentials
- Telnet server with default credentials (plaintext authentication)
- Virtual implementation
 - Same IP, MAC, and netmask
 - sshd on port 22 with default credentials
 - telnetd on port 23 with default credentials
 - Attacker gets a (chrooted) shell

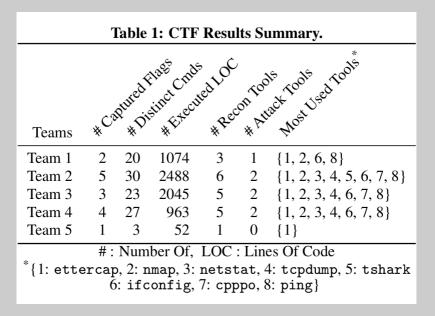
- Capture-The-Flag (CTF)
 - Cybersecurity competition (online and offline)
 - Two types: attack-defense, and jeopardy-style
- S3 CTF was online and jeopardy-style
 - Tasks divided into categories (cyber, physical)
 - A task has a description, some clues, and reward points
 - A task is solved finding and submitting the correct flag
 - Team that captures most flags (scores most points) wins

- Honeypots running on AWS EC2 instances²
 - Linux, m3-medium: 1 vCPU, 3.75 GB RAM, 1 GB SSD
 - Set up a single instance (tricky)
 - Replicate it (easy, press a button)
- Vulnerable gateway interface
 - SSH's credentials given (CTF)
 - Attacker has a (chrooted) shell
- Replicated part of a water treatment ICS
 - Two tanks, sensors, and actuators
 - Four PLCs and a HMI
 - Ethernet/IP protocol, star topology

²https://aws.amazon.com/ec2/

- 1 Network warm up
 - Task: eavesdrop what PLC2 sends to PLC3
 - Required: testbed's topology, MitM attack skills
 - Solution: passive MitM attack between PLC2 and PLC3
- 2 Ethernet/IP warm up
 - ► Task: can you use cpppo³ to access README: 2 tag?
 - Required: Ethernet/IP industrial protocol
 - Solution: Ethernet/IP request (read)
- 3 Overflow the Raw water tank
 - Task: overflow the Raw water tank controlled by PLC1
 - Required: physical process setup
 - Solution: Ethernet/IP packets to overflow the tank

³https://github.com/pjkundert/cpppo



4 Denial of Service HMI

- Task: change the keep alive value sent from the HMI to PLC3?
- Required: active MitM brute-force attacks
- Solution: active MitM with packet dropping
- 5 Overflow the Ultra-filtration tank
 - Task: control PLC4 to overflow the Ultra-filtration tank
 - Required: all the previous challenges
 - Solution: active MitM with selective filter

Evaluation: S3 CTF Results

In this work, we:

- Address the problem of designing a realistic honeypot for ICS
- Present the design of an *high-interaction*, *virtual*, low-cost ICS honeypot that runs *in-a-Box*
- Show an implementation of such a design based on the MiniCPS framework [CPS-SPC15]
- Discuss its evaluation in the context of an ICS CTF [paper draft]

Acknowledgments: Anand, Nils, and S3 participants'. Thank you for your time!