
CTRAPS: CTAP Client Impersonation and API Confusion on FIDO2

Marco Casagrande
Department of Digital Security

EURECOM
Sophia Antipolis, France

marco.casagrande@eurecom.fr

Daniele Antonioli
Department of Digital Security

EURECOM
Sophia Antipolis, France

daniele.antonioli@eurecom.fr

Abstract—FIDO2 is a popular technology for single-factor
and second-factor authentication. It is specified in an open
standard including the WebAuthn and CTAP application
layer protocols. We focus on CTAP which allows the com-
munication between FIDO2 clients and authenticators. No
prior work explored the CTAP Authenticator API which is
a critical protocol-level attack surface as it deals with cre-
dential creation, deletion, and management. We address this
gap by presenting the first security and privacy evaluation
of the CTAP Authenticator API. We uncover two classes of
CTAP protocol-level attacks we call CTRAPS.

The client impersonation (CI) attacks exploit the lack of
client authentication to tamper with FIDO2 authenticators.
They include zero-click attacks capable of deleting FIDO2
credentials, including passkeys, without user interaction. The
API confusion (AC) attacks abuse the lack of protocol API
enforcements and confound FIDO2 authenticators, clients,
and users into calling unwanted CTAP APIs while thinking
they are calling legitimate ones. For example, a victim thinks
is authenticating to a website, when they are deleting their
credentials. The CTRAPS attacks are conducted either in
proximity or remotely and are effective regardless of the
underlying CTAP transport (USB, NFC, or BLE).

We detail the eight vulnerabilities in the CTAP specifica-
tion enabling the CTRAPS attacks. Seven of them are novel
and include unauthenticated CTAP clients and trackable
FIDO2 credentials. We release CTRAPS, an original toolkit
to analyze CTAP and conduct the CTRAPS attacks. We
confirm the attacks’ feasibility by exploiting six popular
authenticators, including a FIPS-certified one, from Yubico,
Feitian, SoloKeys, and Google, and ten widely used relying
parties, such as Microsoft, Apple, GitHub, and Facebook. We
discuss eight backward-compliant countermeasures to fix the
attacks and their root causes. We responsibly disclosed our
findings to the FIDO Alliance and the affected vendors.

Index Terms—FIDO, CTAP, API Confusion

1. Introduction

Fast IDentity Online v2 (FIDO2) is the de-facto stan-
dard for single-factor (passwordless) and second-factor
(2FA) authentication. Google, Dropbox, and GitHub [44]
designed FIDO to offer a practical and scalable solution
for authentication. FIDO has been widely adopted by
industries and organizations including Apple, Microsoft,
and the US government [28]. Market forecasts predict the

FIDO market to rapidly grow from USD 230.6 million in
2022 to USD 598.6 million in 2031 [60]. Yubico, a FIDO
authenticator market leader, sold more than 22 million
YubiKey authenticators [67]. This growth will continue
because of the recent industry-wide push towards single-
factor passkey-based authentication [20], [29], [56].

FIDO2 involves three entities: an authenticator that
generates and asserts possession of authentication creden-
tials (e.g., public-private key pairs), a relying party that
authenticates the user (e.g., challenge-response protocol
based on credentials), and a client who wants to authenti-
cate to the relying party and manages the communication
between the authenticator and the relying party. Typically,
the authenticator is a dongle, the relying party is a web
server, and the client is a web browser or a mobile app.

The authenticator and the client communicate using
the Client to Authenticator Protocol (CTAP). CTAP works
at the application-layer and is transported over Universal
Serial Bus (USB), Near Field Communication (NFC), or
Bluetooth Low Energy (BLE). It exposes the client to
the CTAP Authenticator API, usable to interact with the
authenticator, e.g., credential creation, management, and
deletion. These API calls might require User Verification
(UV) and User Presence (UP) authorization.

This work focuses on the CTAP protocol and its
security and privacy guarantees. There are only a few
research studies about CTAP. The authors of [8] performed
a provable security analysis on CTAP, highlighting unau-
thenticated DH key exchange. In a follow-up work [9],
they proposed an impersonation attack exploiting CTAP
to register an authenticator with an arbitrary relying party.
The authors in [33] present a Machine-in-the-Middle
(MitM) attack on CTAP resulting in a privacy leak. Other
works target the authenticator with fault injection and side
channel attacks [43], [55].

No prior work investigated the FIDO2 CTAP Authenti-
cator API. This API is a critical protocol-level attack sur-
face as it enables the creation, management, and deletion
of credentials and the administration of authenticators.
FIDO2 credentials are security and privacy critical as they
authorize access to popular online services, including,
social media, banking, data sharing, and e-commerce.
A protocol-level attack on the CTAP Authenticator API
would enable access to and manipulation of any credential
stored on any authenticator, regardless of the authentica-
tor’s hardware and software details. Hence, it is crucial to
assess the API’s expected security and privacy properties
and if they hold in practice.



We fill this gap by presenting the first security and
privacy assessment of the CTAP Authenticator APIs. We
uncover two attack classes and eleven related attacks on
CTAP that we call CTRAPS. The client impersonation
(CI) attacks exploit the lack of client authentication to
tamper with an authenticator. Among others, they allow
factory resetting an authenticator without user interaction.
The API confusion (AC) attacks abuse the lack of protocol
API enforcements and confound a FIDO2 authenticator,
a client, and a user into calling unwanted CTAP Authen-
ticator APIs while believing they are calling legitimate
ones. For instance, a user thinks to be authenticating to
a website but they are instead deleting their authenticator
credentials.

We consider two attacker models: a CI attacker imper-
sonating a CTAP client and an AC attacker with a MitM
position between the client and the authenticator. The
adversaries perform the attacks in proximity or remotely.
They do not require physical access to the authenticator,
e.g., no side channel or fault injection. Moreover, they do
not need to compromise the client or the authenticator,
e.g., no client or authenticator malware.

The CTRAPS attacks have a critical and widespread
impact on the FIDO2 ecosystem. They are critical as they
violate the security, privacy, and availability of FIDO2
devices. For example, a CI or an AC attacker can fac-
tory reset an authenticator deleting all FIDO2 creden-
tials and locking out the victim from the related service.
Despite targeting CTAP, the attacks also impact FIDO2
relying parties. For example, they invalidate the non-
discoverable credentials stored by the relying party. They
are widespread as they exploit protocol-level vulnerabili-
ties in the CTAP application-layer protocol. Hence, they
can be conducted against any FIDO2 device regardless of
whether CTAP is transported over USB, NFC, or BLE.

We isolate eight vulnerabilities in the CTAP specifi-
cation enabling the CTRAPS attacks. Seven of them are
novel within FIDO2. They include unauthenticated CTAP
clients, trackable credentials, and weak authorization of
(destructive) API calls. The vulnerabilities are severe as
they affect authenticators and clients implementing CTAP
v2.0, v2.1, and v2.2. We also find and disclose an im-
plementation flaw on Yubico’s authenticator firmware,
allowing an attacker to leak sensitive data and track users.
Yubico addressed the problem and assigned it CVE-2024-
35311 [70].

We present CTRAPS, a new toolkit to experiment
with CTAP and conduct the CTRAPS attacks. The toolkit
has three modules: CTAP testbed, CTAP clients, and
Wireshark dissectors. The testbed provides virtual clients
and relying parties, enabling local testing of the attacks
without the involvement of actual devices. The CTAP
clients module performs the CI and AC attacks. We imple-
mented them to work from proximity and remotely. Our
CTAP clients allow the testing of the attacks on real-world
authenticators and clients. For example, we release an
Android app and a Proxmark3 script to test the CI attacks
over NFC. The dissectors module includes an enhanced
FIDO2 dissector for Wireshark praising new and useful
packet information such as status codes and support for
credential management.

We evaluate popular FIDO2 authenticators, clients,
and relying parties. We deploy them from proximity and

remotely, testing different CTAP transports (USB and
NFC). We attack six authenticators from Yubico, Feitian,
SoloKeys, and Google. One authenticator from Yubico
is FIPS-compliant, meaning that it utilizes cryptographic
algorithms guaranteeing strict security standards. We also
exploit ten relying parties offering passkeys and second-
factor authentication, including Microsoft, Apple, GitHub,
and Facebook.

We discuss eight backward-compliant countermea-
sures that fix the CTRAPS attacks and their root causes.
The fixes include CTAP client authentication, stricter au-
thorization requirements for destructive APIs, introduce a
dedicated PIN for destructive operations (e.g., credential
deletion), and rotate user identifiers and credentials to mit-
igate user tracking. The countermeasures are backward-
compliant as they rely on mechanisms already available
in the authenticator (e.g., PIN and LED) and do not require
extra hardware (e.g., adding a display).

We summarize our contributions as follows:

• We perform the first assessment of the CTAP
Authenticator API. We unveil two classes of CTAP
protocol-level attacks: CI and AC. The attacks
compromise the security, privacy, and availabil-
ity of the FIDO2 ecosystem. For instance, they
(remotely) delete FIDO2 credentials, track users
via FIDO2 credentials, and DoS authenticators.
They are enabled by eight CTAP protocol level
vulnerabilities, seven of which are new.

• We provide a toolkit to evaluate the CTAP Au-
thenticator API and test our attacks in a virtual en-
vironment and on actual devices. We successfully
conduct our attacks against six authenticators, two
transports, and ten relying parties.

• We design eight backward-compliant countermea-
sures to fix our attacks and their root causes.
We also responsibly disclosed our findings to the
FIDO2 Alliance and affected vendors.

Responsible disclosure. We responsibly disclosed our
findings to the FIDO Alliance in November 2023 [6]. They
acknowledged our report and shared it with their members.
In May 2024, they provided feedback highlighting that the
CI and AC attacks deployed by a proximity-based attacker
are less scalable than remote ones. They argued on the
effectiveness of CTRAPS attacks against authenticators
running on a TEE. They also discussed the possible ad-
dition of our attacks to FIDO’s threat model.

In December 2023, we reported our findings to the
affected authenticator manufacturers (i.e., Yubico, Feitian,
SoloKeys, and Google). Google confirmed our findings,
assigning them priority P2 and severity S2. They re-
sponded that our attacks required a compromised FIDO
client and closed the issue without resolution. We argue
that Google’s assessment is incorrect as our attacks do not
require a compromised FIDO client. Yubico confirmed the
implementation bug we found, pushed a fix in production,
published a security advisory [71], and assigned it CVE-
2024-35311 [70]. The other manufacturers acknowledged
the report without commenting on it.

We also contacted Apple and Microsoft regarding
their weak credential protection policy that facilitates user
tracking and profiling. They responded that our report has
no security implications for their products.



Ethics and availability. We conducted our experi-
ments ethically. We evaluated our authenticators and ac-
counts. We did not collect personal data and involved
third parties. To advance open science, we open source
our contributions, including the CTRAPS toolkit, found at
https://github.com/Skiti/CTrAPs.

2. Background and System Model

We introduce FIDO2, CTAP, and our system model.

2.1. FIDO2

FIDO2 [4] is an open and pervasive standard for
single-factor and multi-factor authentication. It is man-
aged by the FIDO Alliance. FIDO2 has four entities: an
authenticator, a client, a user, and a relying party. In a
typical scenario, a user connects their authenticator to the
client to access an online service hosted by a relying party.

The FIDO2 specification includes the WebAuthn and
CTAP application-layer protocols. WebAuthn provides a
secure communication channel to a relying party and
a client. Its latest version is WebAuthnL2 [63]. CTAP,
the focus of this work, enables a secure connection be-
tween a FIDO2 authenticator and a client via the CTAP
Authenticator API. For example, the MakeCred API
registers a new credential while the GetAssertion API
authenticates a credential.

A FIDO2 credential is a key pair used to sign and
verify authentication challenges to authenticate a user. The
digital signature is computed using standard techniques,
like Elliptic Curve Digital Signature Algorithm (ECDSA).
Access to the credential private key is guarded by encryp-
tion using a credential master key, which is unique to each
authenticator and stored in the authenticator.

FIDO2 credentials can be discoverable or non-
discoverable. Discoverable credentials, also known as
passkeys, are stored on the authenticator and used for
passwordless authentication. Non-discoverable credentials
are stored by the relying party and used for multi-factor
authentication.

FIDO2 credentials are associated with a credential
identifier (CredId), a relying party identifier (RpId), and a
user identifier (UserId). The CredId uniquely identifies a
FIDO2 credential and is derived from the credential mas-
ter key stored in the authenticator. When FIDO2 clients
authenticate a credential, they must know its associated
CredId. The RpId indicates the relying party with which
the credential was registered. It is public as it corre-
sponds to the base domain of the relying party (e.g.,
login.microsoft.com).

The UserId represents the user’s online account within
the relying party’s service. The relying party assigns a
random UserId to the user during account registration,
and it is shared across all FIDO credentials associated
with that user. The optional FIDO2 CredBlob extension
allows a relying party to store additional metadata inside
a credential.

2.2. CTAP

The Client-to-Authenticator Protocol (CTAP) is a core
part of the FIDO2 standard, alongside WebAuthn. It is an

TABLE 1. CTAP AUTHENTICATOR APIS WITH THEIR UV AND UP
AUTHORIZATION REQUIREMENTS, AND SUPPORT FOR

SUBCOMMANDS. YES1 : DEPENDS ON THE CLIENT AND RELYING
PARTY CONFIGURATION, YES2 : DEPENDS ON API SUBCOMMAND.

CTAP API UV UP Subcmd

MakeCred (MC) Yes Yes No
GetAssertion (GA) Yes1 Yes1 Yes
CredMgmt (CM) Yes No Yes
ClientPin (CP) Yes2 No Yes
Reset (Re) No Yes No
Selection (Se) No Yes No
GetInfo (GI) No No No

application-layer protocol that defines the communication
between a FIDO client and an authenticator. CTAP has
considerably evolved since its inception. CTAP1, also
known as FIDO U2F (Universal 2nd Factor), introduced a
second-factor authentication mechanism to combat phish-
ing. CTAP2.0 maintains backward compatibility with
CTAP1 while introducing passwordless (single-factor) au-
thentication. CTAP2.1 [1] adds the credential protection
policy, discoverable credential management (i.e., the Cre
dMgmt API), and biometric authentication. CTAP2.2 [3],
the latest CTAP version still considered a draft, supports
hybrid authenticators and QR codes.

CTAP relies on two user authorization mechanisms
to secure API calls from the client: (i) User Verification
(UV), which requires the user to enter a PIN or biometric
data, and (ii) User Presence (UP), which requires the user
to press a button on the authenticator or to bring it into
the client’s NFC range.

Table 1 shows the seven CTAP Authenticator APIs
studied in this paper and their UV and UP requirements:

MC: MakeCred registers a new credential bound to an
online account with a relying party.

GA: GetAssertion authenticates to a relying party
by proving possession of a credential.

CM: CredMgmt enumerates, modifies, and deletes the
authenticator’s discoverable credentials.

CP: ClientPin handles UV based on a user PIN to
be submitted via the client’s UI.

Re: Reset wipes all discoverable and non-
discoverable credentials and generates a new
master key.

Se: Selection selects an authenticator to operate
among the available ones.

GI: GetInfo returns the authenticator’s details, like
manufacturer, transports, extensions, and settings.

The GetAssertion, CredMgmt, and ClientP
in APIs have API subcommands. For example, Cred
Mgmt(GetCredsData) returns the number of stored
discoverable credentials and CredMgmt(DelCreds)
deletes all discoverable credentials. Some API subcom-
mands, compared to their original API, have more relaxed
requirements. For instance, ClientPin(KeyAgreeme
nt) does not require UV.

CTAP offers other optional security and privacy mech-
anisms. The authorization requirements for GetAssert
ion depend on the client and relying party configuration.
A client can specify the option up=false to skip UP.



CTAP WebAuthn Relying 
Party

Authenticator Client

UVUP

CI Client

CTAP

User

AC MitM

Figure 1. CTRAPS threat model. The user authenticates to the relying
party using a client (e.g., browser) and an authenticator (hardware
dongle). The user when needed grants UP by pressing a button on to
the authenticator and UV by submitting a PIN to the client. We study
two attacker models: (i) a client impersonation attacker targeting the
authenticator over CTAP (left), (ii) a MitM attacker in the CTAP channel
between the authenticator and the client.

At registration time, a relying party can enforce access
control by specifying a credential protection policy via
the optional CredProtect extension. However, the default
policy skips UV, resulting in weak privacy protection.

2.3. System Model

We adopt the official FIDO2 system model [4]. Fig-
ure 1 shows the system model’s four entities: authenti-
cator, client, relying party, and user. The user connects
the authenticator to the client to authenticate on a service
hosted by the relying party. The entities support up to
CTAP2.2 and WebAuthnL2 (i.e., the latest and supposedly
most secure FIDO2 protocol versions). Next, we describe
each entity. The attacker models are presented in Sec-
tions 3.1 and 4.1 as they are specific to the CI and AC
attacks.

Authenticator. The authenticator is a FIDO2 authen-
ticator: a user device that can be connected to the client
(e.g., a USB/NFC dongle). The authenticator runs a CTAP
server that exposes the CTAP Authenticator API. The API
is accessible over USB, NFC, and BLE. The authenticator
supports FIDO2’s UP and UV user authorization mecha-
nisms. It stores discoverable credentials and the credential
master key.

Client. The client is a FIDO2 client handling the
communication between the authenticator and the relying
party. It exposes a CTAP client to the authenticator and a
WebAuthn client to the relying party. The client could be
a web browser, a mobile app for Android [25] or iOS [26],
or a command line tool like the Yubico CLI [69].

Relying party. The relying party is an online ser-
vice that relies on FIDO2 passwordless or multi-factor
authentication. It runs a WebAuthn server that responds
to FIDO2 registration and authentication requests. The
relying party stores non-discoverable credentials, and user
and credential identifiers. The relying party communi-
cates with the client using TLS. Offline operations on
the authenticator, like deleting discoverable credentials,
indirectly affect the relying party by making the user
unable to log into their online service.

User. The user owns an authenticator and a device
that runs the FIDO2 client, e.g., a YubiKey dongle and a
laptop. They utilize their authenticator to register FIDO2
credentials and authenticate to the associated relying party.
To do so, they connect their authenticator to the client and
provide UV and UP, if necessary. The user manages the
authenticator via the client, without connecting to a rely-
ing party. For example, they can check their discoverable
credentials and change the authenticator’s PIN.

3. CTRAPS Client Impersonation Attacks

The CTRAPS CI attacks target an authenticator while
spoofing a client to perform CTAP API calls without user
authorization. CI attacks factory reset the authenticator via
the Reset API, track the user via GetAssertion, lock
the authenticator via ClientPin, and profile the au-
thenticator via GetInfo. They exploit five protocol-level
CTAP vulnerabilities we found (described in Section 5.1).
For instance, the absence of CTAP client authentication
facilitates impersonation, the use of NFC transport allows
to bypass UP, and the lack of UV when calling Reset
enables unauthorized factory resets.

The attacks advance the state of the art in FIDO2’s
security and privacy by introducing client impersonation.
This is a new class of attacks previously unseen in FIDO2,
as shown in Table 7. The CI attacks require limited or
no user interaction, depending on the CTAP transport.
For example, by using NFC, they bypass UP, leading to
zero-click attacks. The CI attacks also involve no client
compromise, being deployed from a client owned by the
attacker. Next, we introduce the CI attacker model and
describe the attacks.

3.1. CI Attacker Model

The CI attacker model assumes an attacker imperson-
ating a CTAP client to the victim’s authenticator, refer-
enced as CI Client in Figure 1. The attacker is in proximity
of the victim’s authenticator, or can remotely connect to
it. They have no physical access to and do not tamper with
the victim’s client and authenticator. They do not install
malware on the victim’s device running the FIDO2 client.

The CI attacker model maps to several relevant attack
scenarios. For example, they can approach a target authen-
ticator over NFC while impersonating a client (e.g., via a
smartphone or a Proxmark), place a malicious NFC device
in a place where a user might touch it with an authen-
ticator (e.g., under a table), They can also communicate
with the victim’s authenticator using a compromised hard-
ware device, such as a USB hub that connects the user’s
machine and the authenticator, or virtual USB peripheral,
through a setup similar to [15].

3.2. CI Attacks Description

We describe the four CI attacks, which we label CI1,
CI2, CI3, and CI4.

CI1: Factory reset authenticator. In CI1, the at-
tacker abuses the Reset API to factory reset an au-
thenticator, as shown in Figure 2. The attacker connects
to the authenticator and, without authenticating, issues a



Authenticator Attacker

Reset, UP

NFC bypasses User Presence (UP)

Deletes
all creds

Resets
settings
and data

Reset OK

Figure 2. CI1 attack. Factory reset authenticator via Reset. While
in NFC range, the attacker calls the Reset API. Over NFC, the
authenticator skips UP and instantly factory resets, deleting all of its
discoverable and non-discoverable credentials.

factory reset command (which requires UP). Over USB,
the attack requires one click (UP) and the authenticator
having been plugged into the USB port within the last
ten seconds. Over NFC, the attacker achieves zero-click
reset by exploiting a CTAP quirk intended to enhance
usability. That is, NFC communication inherently implies
user presence, allowing UP to be bypassed. The execution
of the factory reset wipes out all credentials, even the non-
discoverable ones stored by the relying party, as it erases
the credential master key necessary for decryption. It also
deletes the authenticator’s settings, including the PIN,
user preferences, and stored data. Then, the authenticator
confirms the successful reset.

CI2: Track user from credentials. In CI2, instead of
using GetAssertion for authentication, the attacker
exploits it to leak identifying data and track the user,
as shown in Figure 3. CI2 requires a pre-determined
list of RpId for which the attacker aims to leak cre-
dentials. This is straightforward, as this information is
publicly accessible. Although the GetAssertion API
requires both UV and UP, the attacker can circumvent
both authorizations, resulting in a zero-click data leak and
enabling user tracking. They bypass UP by issuing a Ge
tAssertion command containing the up=false option.
They bypass UV by only targeting relying parties that
register credentials using the weak and default CredPro-
tect=UVOptional policy, such as Microsoft and Apple. Ex-
ecuting GetAssertion returns a list of credential and
user identifiers. These identifiers can be used to fingerprint
the user and to track them over multiple connections by
performing CI2 each time and looking for matching finger-
prints. CI2 also works on credentials protected by stronger
policies (i.e., CredProtect=UVRequired and CredPro-
tect=UVOptionalWithCredIDList), but requires UV or
knowledge of the credential identifiers.

CI3: Force authenticator lockout. In CI3, the at-
tacker abuses the ClientPin API, protecting the authen-
ticator from PIN brute-forcing, to lock the authenticator or
even force a factory reset. They submit to the authenticator
several wrong PIN guesses in a row via the ClientP
in(GetPinToken) subcommand. After three wrong
guesses, the authenticator enters a soft lock mode pre-
venting actions until a reboot (i.e., leaving and re-entering
a client’s NFC range, or detaching and re-attaching to
a USB port). After a maximum of failed PIN attempts

Authenticator Attacker

RpIdList using CredProtect=UVOptional

GA, RpIdList, up=false

GA OK, CredIdList, UserIdList

FingerprintList =
HASH(CredIdList, UserIdList)

Figure 3. CI2 attack. Track user from credentials via GetAssertion.
The attacker connects to the authenticator and calls the GetAssertion
API (GA in the figure). They skip UV by targeting relying parties
using the weak and default CredProtect default policy and skip UP by
passing up=false. The authenticator returns a list of credential and user
identifiers, used by the attacker to fingerprint the authenticator and track
the user.

(CTAP mandates eight), the authenticator enters a hard
lock mode only restorable through a factory reset, which
wipes out all credentials and can lead to account loss.

CI4: Profile authenticator. In CI4, the attacker calls
GetInfo to leak the authenticator’s technical details.
This attack can be used as a stepping stone to more ad-
vanced attacks, to profile the user and track them in future
connections, and to assess whether the authenticator is
vulnerable to an implementation-specific attack like [70].
The leaked details include the manufacturer, model, and
FIDO2 version, and the supported algorithms, transports,
options, and extensions. The authenticator also discloses
user settings, such as FIDO2 being disabled over a specific
transport.

4. CTRAPS API Confusion Attacks

The CTRAPS AC attacks take advantage of a novel
attack technique for FIDO, which we refer to as API
confusion. API confusion tricks a client, an authenticator,
and their user into calling a CTAP Authenticator API
while they think they are calling a different one. The called
API has the same or lower UV and UP requirements of the
intended API. For example, AC attacks can erase FIDO2
credentials, including passkeys, lock the user out of their
authenticator, and track them.

AC is effective as it does not require social engineer-
ing [61] or other deception techniques [50] to trick the
user into calling an unwanted API. The user cannot detect
an API confusion because it requires expected UV or UP
actions. The AC attacks exploit the eight protocol-level
vulnerabilities we outline in Section 5.1. For instance,
the absence of authenticator feedback during API calls
grants stealthiness and the use of static credential and user
identifiers enables user tracking.

No prior work considered the AC attack vector for
FIDO2, as shown in Table 7. Existing attacks on FIDO
include MitM on the Diffie-Hellman key exchange, CTAP
traffic eavesdropping, U2F impersonation, physical access,
and side channel attacks on the authenticator. Moreover,
the AC attacks target the entire CTAP Authenticator API
surface, whereas previous research only focused on Clie
ntPin and MakeCred. Next, we will introduce the AC
attacker model and attacks.



TABLE 2. THERE ARE 49 WAYS TO PERFORM AC AGAINST 7 CTAP
AUTHENTICATOR APIS. THE USER INTENDS TO CALL API A,

INSTEAD IS TRICKED INTO CALLING API B. ✓1 : PROXIMITY-BASED
ATTACKER, ✓2 : DEFAULT CredProtect=UVOptional IF CREDENTIAL

PROTECTION IS ENABLED, N/A: NOT APPLICABLE.

CM Re GA MC CP Se GI

CM n/a ✓1 ✓ ✓1 ✓ ✓ ✓

Re n/a n/a ✓2 n/a ✓ ✓ ✓

GA ✓ ✓ n/a ✓ ✓ ✓ ✓

MC ✓ ✓ ✓ n/a ✓ ✓ ✓

CP ✓ ✓1 ✓ ✓1 n/a ✓ ✓

Se n/a ✓ ✓2 n/a ✓ n/a ✓

GI n/a ✓1 ✓2 ✓ ✓ ✓ n/a

Total 3 6 6 4 6 6 6

4.1. AC Attacker Model

The AC attacker model assumes a MitM attacker
between the authenticator and the client, referenced as AC
MitM in Figure 1. The attacker is either in proximity to the
authenticator and the client (e.g., an NFC skimmer) or can
contact them from remote (e.g., a remotely controllable
USB hub). They are unable to modify the authenticator’s
firmware or compromise a legitimate FIDO2 client and
relying party. They have no physical access to the authen-
ticator.

An AC attacker model has several associated real-
world attack scenarios. For example, they can get a MitM
position over NFC interposing an NFC skimmer between
the client and the authenticator. They can achieve a MitM
position over USB with setups such as those discussed
in [62] and [41]. For instance, the attacker can remotely
compromise a USB device connected to the user’s device
running the FIDO2 client, such as a USB hub that routes
traffic between other USB peripherals.

Alternatively, they can gain privileged access via tech-
niques like UACMe [53] and then leverage USBPcap
to USB MitM a victim’s Windows machine running the
FIDO2 client. The attacker can also install on the user’s
machine a malicious app exploiting libraries that provide
access to USB HID traffic. We implement this attack
scenario in Section 6.2 by developing an Electron app
that mimics a MitM attacker using the node-hid module.

4.2. AC Technique and Combinations

The seven AC attacks rely on the API confusion attack
technique. The attacker intercepts a call to API A and
changes (i.e., confounds) it to API B. This action only
requires that API B has the same or lower UV and UP
authorization requirements than API A. The AC technique
has six steps:

1) The user calls API A through the client. The API
might require UV and/or UP.

2) If required by API A, the attacker obtains UV
by executing the CTAP PIN/UV authentication
protocol v1 (via ClientPin). The user inputs
the PIN on the client, which encrypts it and
submits it to the authenticator. The authentica-
tor responds with an encrypted User Verification

Authenticator Attacker User

API A, UV

User Verification (UV)

CM(GetCredsData), UV

StoredCredsAmount

CM(EnumRps), UV

RpIdList

CM(EnumCreds), UV, RpIdList

CredIdList

CM(DelCreds), UV, CredIdList

Deletes all
disc. creds

CM(DelCreds) OK API A OK

Figure 4. AC1 attack. Delete discoverable credentials attack with prox-
imity. The user intends to call API A, requiring UV but not necessarily
UP. For example, GetAssertion, ClientPin, or MakeCred. The
attacker obtains UV from the unsuspecting user. Instead of API A,
they call CredMgmt (CM in the figure). They execute four CredMgmt
subcommands which list and then delete all discoverable credentials on
the authenticator.

Token (UVT), that will be attached to any API
call requiring UV.

3) The attacker calls API B rather than API A based
on the AC combinations in Table 2.

4) If required by API A, the attacker obtains UP
from the user, unable to realize they are under
attack. The attacker can only obtain UP once, as
multiple requests would alarm the user. This step
is bypassed whenever NFC proximity implies
UP.

5) The authenticator executes API B and returns a
success message.

6) The attacker informs the victim via the CTAP
client that API A was successfully executed.

The AC strategy is effective on 7 CTAP Authenticator
APIS and provides 49 ways to confound the victim as
shown in Table 2. Multiple (API A, API B) pairs achieve
the same goal. The amount of available pairs depends on
their UV and UP requirements and, in the case of AC3,
also on the CredProtect policy. The first column lists seven
APIs the user intends to call (API A), and the remaining
columns represent the API called by the attacker (API B).
For instance, AC1 is available whenever the user calls Ma
keCred, GetAssertion, or ClientPin, confound-
ing the call to CredMgmt. Some combinations are only
feasible by a proximity-based attacker or under the default
CredProtect policy. An API cannot be confounded with it-
self or APIs with incompatible authorization requirements.

4.3. AC Attacks Description

We describe seven AC attacks labeled AC1, AC2, AC3,
AC4, AC5, AC6, and AC7. AC1 exploits all possible ways
to call CM, AC2 does this with Re, and so on.

AC1: Delete discoverable credentials. In AC1, the
attacker abuses the CredMgmt API to delete all discov-
erable credentials stored on the authenticator, as shown in



Figure 4. The user intends to call API A, which requires
UV but not necessarily UP, such as GetAssertio
n, ClientPin, or MakeCred. Instead, the attacker
executes four separate CredMgmt subcommands, none
of which require UP. First, they check the existence of
discoverable credentials to erase (StoredCredsAmount) via
CredMgmt(GetCredsMetadata). Second, they re-
trieve the list of relying parties stored on the authenticator
(RpIdList) via CredMgmt(EnumRps). Third, they use
RpIdList to retrieve the list of stored credential identifiers
(CredIdList) via CredMgmt(EnumCreds). Fourth, they
use CredIdList to delete all discoverable credentials via C
redMgmt(DelCreds). Finally, they falsely return AP
I A OK to the user.

AC2: Factory reset authenticator. In AC2, the at-
tacker exploits the Reset API to factory reset the authen-
ticator, similar to CI1. Since Reset over USB requires
UP, but not UV, an attacker can confound MakeCred, G
etAssertion, and Selection into a Reset call. An
attacker over NFC, able to bypass UP, can also confound
CredMgmt, ClientPin, and GetInfo.

AC3: Track user from credentials. In AC3, the
attacker misuses the GetAssertion API to leak unique
identifiers as fingerprints and track the user, similar to
CI2. They can confound MakeCred, CredMgmt, and
ClientPin into a GetAssertion call, if they want to
access credentials protected by the CredProtect=UVRequi
red or CredProtect=UVOptionalWithCredIDList policies.
Additionally, the attacker can also confound Reset, Se
lection, and GetInfo if they only wants to access
credentials protected by the weak CredProtect=UVOptio
nal default policy.

AC4: Fill authenticator’s credential storage. In AC4,
the attacker repeatedly calls MakeCred to register new
discoverable credentials, until the authenticator’s creden-
tial storage is full. They exploit the rk=true option to
enforce the generation of discoverable credentials over
non-discoverable ones. A filled storage compromises the
authenticator’s availability as the user cannot register new
discoverable credentials.

AC5: Force authenticator lockout. In AC5, the at-
tacker abuses the ClientPin API to lock the authenti-
cator and force a mandatory factory reset, similar to CI3.
Although ClientPin requires UV, the attacker wants
to fail multiple PIN attempts (i.e., they do not need UV).
Consequently, they can confound any API call into a Cl
ientPin call, as they do not need authorization.

AC6: Authenticator DoS. In AC6, the attacker calls
Selection to trigger an unwanted UP check, keeping
the authenticator busy and denying availability. Since the
attacker can detect when the busy state ends (e.g., the
user pressed the authenticator’s button or 30 seconds have
passed), they can prolong the attack.

AC7: Profile authenticator. In AC7, the attacker
invokes GetInfo to retrieve the authenticator’s details.
Then, similar to CI4, they use this information as a
stepping stone to other attacks, tracks the user, or checks
whether the authenticator is vulnerable to implementation-
specific attacks [70]. Not requiring UV or UP, the attacker
can confound any API call into a GetInfo call.

5. CTRAPS Vulnerabilities and Impact

We present the root causes of the CTRAPS attacks
and discuss our attacks’ impact on the FIDO2 ecosystem.

5.1. Vulnerabilities

The CI and AC attacks are enabled by eight vulner-
abilities we discovered in the CTAP specification. Seven
of them are novel, whereas V2 was discussed in [65].
Regardless, this is the first work exploiting V2 via AC.
Now, we will describe the vulnerabilities and map them
to the CI and AC attacks.

V1: Unauthenticated CTAP client. The CTAP client
does not authenticate to the authenticator. FIDO2 clients
(and, by extension, CTAP clients) lack an identity, pre-
venting the authenticator from distinguishing an official
client developed by its manufacturer and a third-party
client. As a result, the authenticator trusts any connecting
client, including spoofed ones.

V2: No authenticator feedback about API calls.
The authenticator does not provide visual feedback to the
user when invoking the CTAP Authenticator API. As a
result, the user is unable to verify whether the intended
API has been correctly called (or has been confounded
instead), or which API utilized the most recent UV and
UP authorizations granted.

V3: NFC range provides UP. Authenticators within
the NFC range of a FIDO2 client automatically obtain UP
without the user pressing a button on the authenticator.
Bypassing UP means that MakeCred, GetAssertio
n, and Reset are solely protected by UV, or they now
require no authorization at all.

V4: Weak access control to destructive APIs. De-
structive API calls, such as credential deletion (CredM
gmt) or authenticator factory reset (Reset), and non-
destructive ones, like authentication (GetAssertion)
are authorized by the same UV PIN. Whenever the user
grants UV for a non-destructive operation, they unknow-
ingly over-privilege the client, enabling destructive op-
erations as well. For example, the user grants UV to
authenticate (non-destructive), but an AC attacker exploits
the over-privileged access to instead factory reset the
authenticator (destructive).

V5: User trackable via CredId and UserId. Discov-
erable credentials contain static and unique CredId and
UserId, exploitable to reliably track users. These values
can be obtained without UV or UP via the GetAssert
ion API. We note that the more credentials are stored in
the authenticator, the more this vulnerability is effective,
as each credential improves to the user’s fingerprint.

V6: Reset does not verify the user. Despite being
destructive, the Reset API only requires UP, which does
not verify that the person operating the device is the
owner. Anyone nearby the authenticator can obtain UP
by pressing its button or by being within NFC range.

V7: CredMgmt allows to delete multiple credentials
at once. The CredMgmt API only requires UV, meaning
that no user interaction is needed to delete discoverable
credentials. This allows multiple discoverable credentials
to be deleted without first alerting the user or asking for
a confirmation.



TABLE 3. MAPPING THE EIGHT VULNERABILITIES (COLUMNS) TO
THE FOUR CI AND SEVEN AC ATTACKS.

V1 V2 V3 V4 V5 V6 V7 V8

CI1 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

CI2 ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

CI3 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

CI4 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

AC1 ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗

AC2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗

AC3 ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

AC4 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

AC5 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

AC6 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

AC7 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

V8: Selection is usable for DoS. The Sele
ction API can be used to DoS an authenticator by
continuously prompting it for UP checks.

Table 3 maps the eight vulnerabilities (columns)
to the eleven CTRAPS attacks (rows). V1 is needed to
perform all CI and AC attacks, as it allows an untrusted
client or a MitM attacker to connect to the authenticator
without authenticating to it. V2 provides stealthiness to
AC attacks because, without visual feedback, the user
cannot confirm whether the API they are calling is being
confounded or not. Due to V3, CI1 and CI2 over NCF
require zero clicks instead of one (UP). V3 also unlocks
several new API confusion combinations, such as GetI
nfo into Reset.

Moreover, V4 allows to perform the (destructive) CI2,
CI3, AC1, AC2, and AC5 attacks even when the user calls
a non-destructive API, such as Selection. V5 enables
the usage of identifiers as persistent fingerprints, resulting
in two user tracking attacks (CI2 and AC3). V6 allows
for a zero-click factory reset attack (CI1) over NFC. V7
allows for a one-click credential deletion attack (AC1).
V8 enables a persistent and reliable DoS attack on the
authenticator (AC6).

5.2. Impact

The eleven CTRAPS attacks break the security, pri-
vacy, and availability of the FIDO2 ecosystem, with
widespread and severe implications. We support our
claims with the experimental results presented in Sec-
tion 7.

Our attacks exploit protocol-level CTAP vulnerabili-
ties, working regardless of the transport and the imple-
mentation details of the authenticator, the client, and the
relying party. Hence, they threaten millions of authentica-
tors in the wild, their users, and the relying parties. Being
at the protocol-level, the root causes are challenging to
fix, as most authenticators, including YubiKeys, do not
support firmware updates.

The CTRAPS attacks are practical and low-cost, re-
quiring minimal equipment, such as a smartphone. Their
outcome is realistic and involves limited or no user in-
teraction, as shown in the video demonstrations available
in the CTRAPS GitHub repository. For instance, we lost

access to our test Google and Apple ID accounts because
we could not pass 2FA after deleting our credentials with
AC1.

5.3. Comparison with prior FIDO attacks

Table 7 compares our attacks with previous attacks on
FIDO. The CI attacks are the first client impersonation
attacks targeting FIDO2 (CTAP2+), while the AC attacks
utilize API confusion, a novel attack strategy for FIDO2.
Prior research on CTAP evaluated only the ClientPin
and MakeCred APIs. Instead, our attacks target the en-
tire Authenticator API, regardless of the CTAP transport,
covering a broader surface.

The CI attacks have low complexity, as they do not
require a compromised client or prior knowledge of user
secrets (e.g., credential identifiers). The AC attacks have
a moderate complexity, as they require a MitM position.
Both CI and AC attacks have a high impact as they can,
for example, destroy credentials and track users.

The existing FIDO attacks with a high impact also
require a strong attacker model, such as physical access
or malware installed on the user’s browser or device. In
contrast, the CTRAPS attacks employ a weaker attacker
model, i.e., client impersonation and MitM attacker, while
still achieving high impact with low-to-mid complexity.

6. Implementation

In this section, we present CTRAPS, a novel toolkit
that implements the CTRAPS attacks and enables exper-
imentation with CTAP. The toolkit has three modules:
a CTAP testbed (Section 6.1), four customizable CTAP
clients (Section 6.2), and an enhanced FIDO2 Wireshark
dissector (Section 6.3).

The CTAP testbed and the Electron app CTAP client
need the user’s authorization to connect and communicate
with the authenticator. Linux requires adding extra udev
rules, macOS asks to accept a notification on the screen,
and Windows needs admin privileges. This limitation is
expected, as it is also present in FIDO2 apps released
by authenticator manufacturers, such as the Yubico Au-
thenticator App and the Feitian Authenticator Tool. Now,
we will describe the implementation of each module and
highlight their novelties.

6.1. CTAP Testbed

Our CTAP testbed includes a virtual WebAuthn re-
lying party and a virtual WebAuthn/CTAP client. The
testbed can test real authenticators without having to
tamper with actual credentials and also launch the
CTRAPS attacks. Our relying party and client extend
the Yubico open-source Python library for FIDO2 called
python-fido2 [68].

Virtual relying party. The virtual relying party is im-
plemented as a customizable WebAuthn server. It includes
standard relying party templates and fast customization
of the server’s parameters. For example, we implemented
a template imitating a Microsoft relying party, including
its FIDO2 identifier (i.e., login.microsoft.com). The virtual
relying party is useful to quickly test real authenticators



against CI and AC attacks. For example, we can automati-
cally register credentials with different protection policies
on the authenticator.

Virtual client. The virtual client offers a convenient
CTAP API, offering low-level access to any CTAP mes-
sage. It can send CTAP commands in any order, or issue
custom and malformed payloads. It can be configured with
different CTAP authorization requirements, authentication
challenges, and origins.

6.2. CTAP Clients

We developed four custom CTAP clients: an Android
app performing proximity CI over NFC, an Android app
performing remote CI over NFC, a Proxmark3 script that
executes proximity CI over NFC, and an Electron app
simulating a MitM attacker to test remote AC over USB.
We released in the CTRAPS GitHub repository five video
demonstrations, showing how to deploy the CTRAPS
attacks on real authenticators using our clients.

Android app for proximity CI over NFC. We
implemented the proximity CI attacks using an Android
app which impersonates a FIDO2 client over NFC. The
app runs on a device owned by the attacker and targets
any authenticator that comes within the NFC range. For
example, it can perform CI2 to leak identifiers and track
the user.

Android app for remote CI over NFC. We utilized
an Android app to implement the remote CI attacks over
NFC. The app is installed on a device owned by the
victim. It spoofs a legitimate NFC app, enticing the user
to scan their authenticator (e.g., by asking for FIDO2
authentication). The attacker can connect to the app and
manage the CTAP connection with the authenticator. The
app does not need root privileges and asks at runtime for
the dangerous android.permission.NFC, required
to gain access to the android.nfc [23] API. However,
this is not a concern, as the app is not trying to conceal its
NFC capabilities. The app also needs the standard install-
time android.permission.INTERNET to exfiltrate
the data collected through CI2 and CI4.

Proxmark3 for proximity CI over NFC. We im-
plemented the proximity CI attacks using the Prox-
mark3 [54], an open-source and programmable develop-
ment kit for NFC (RFID). We wrote a Lua script using
the Proxmark3 ISO14443 Type A module (i.e., read14a)
to communicate to the authenticator via CTAP-compliant
APDUs. By equipping the Proxmark3 with a long-range
high-frequency antenna, we were able to extend its reach.
The long-range antenna has an indicative range of 100 to
120 millimeters, as opposed to the 40 to 85 millimeters
of the built-in antenna.

Electron app to simulate AC over USB. We de-
veloped an Electron app that simulates a MitM attacker.
The app uses the node-hid module to access the USB HID
traffic, gaining a MitM position between a FIDO client and
an authenticator communicating over USB. The app scans
for local HID devices and identifies the authenticators
from their properties (e.g., the product and manufacturer
fields). Then, it connects and sends binary data over USB
to the authenticator. The Electron app is compatible with
Windows, macOS, and Linux.

TABLE 4. DETAILS ABOUT THE SIX AUTHENTICATORS WE ATTACK.
ALL AUTHENTICATORS SUPPORT USB AND NFC, EXCEPT OPENSK,

WHICH ONLY SUPPORTS USB. FVER: FIRMWARE VERSION, OSF:
OPEN-SOURCE FIRMWARE, DCR: DISCOVERABLE CREDENTIALS.

Authenticator Manuf Year FVer OSF DCr

YubiKey 5 Yubico 2018 5.2.7 No 25
YubiKey 5 FIPS Yubico 2021 5.4.3 No 25
Feitian K9 Feitian 2016 3.3.01 No 50
Solo V1 SoloKeys 2018 4.1.5 Yes 50
Solo V2 Hacker SoloKeys 2021 2.964 Yes 50
OpenSK Google 2023 2.1 Yes 150

6.3. FIDO2 Wireshark Dissector

We extended an unofficial Wireshark FIDO2 dissector
found in [72]. We add valuable features, such as support
for the CredMgmt API. We include parsers for WAITING
and PROCESSING keepalive status codes that identify
when authenticators are unavailable. We parse the authen-
ticator’s capabilities in the CTAPHID_INIT message,
which are useful for testing AC7. We provide an improved
way to display CTAP data when dissecting CTAPHID
(USB) and ISO7816/ISO14443 (NFC). Finally, we add
missing vendor and product identifiers to the dissector
tables. The FIDO2 dissector is included in our toolkit as
a Lua script (i.e., fido2-dissectors.lua).

7. Evaluation

We evaluated our eleven attacks against six popular
and recent authenticators from Yubico, Feitian, SoloKeys,
and Google. We also tested ten widely used relying par-
ties, including Microsoft, Apple, GitHub, and Facebook.
Next, we will present our evaluation setup and results.

7.1. Setup

Authenticators. We evaluate six popular FIDO2 au-
thenticators. Table 4 shows their technical details. The
YubiKey 5 NFC, YubiKey 5 NFC FIPS, and Feitian NFC
K9 are closed-source and do not support firmware updates.
The Solo V1, Solo V2 Hacker, and Open Security Key
(OpenSK) have an open-source firmware (OSF), that we
updated to their latest version. The authenticators support
USB and NFC, except for OpenSK which has an NFC
module but supports only USB. The Solo V1 requires a
button press to activate NFC. Unfortunately, we could not
find any FIDO2 authenticator supporting BLE.

The authenticators store a maximum of 25 (Yubico),
50 (Feitian and SoloKeys), or 150 (OpenSK) discoverable
credentials. The YubiKey 5 FIPS is FIPS140-2 compliant,
and, as such, it should provide high security guarantees.
We ran OpenSK on an NRF52840 dongle, but any board
supporting OpenSK would have worked.

Relying parties. Our list of relying parties covers
pervasive and heterogeneous online services, including
software as a service, social, gaming, cryptographic sign-
ing, authentication, and cloud storage. We registered our
authenticators with ten FIDO2 relying parties: Adobe, Ap-
ple, DocuSign, Facebook, GitHub, Hancock, Microsoft,
NVidia, Synology, and Vault Vision. Some of them offer



TABLE 5. CI AND AC ATTACKS ON SIX AUTHENTICATORS. THE FIRST COLUMN LISTS THE AUTHENTICATORS’ NAMES. THE REMAINING
COLUMNS REPORT OUR FOUR CI AND SEVEN AC ATTACKS ON CTAP. ✓: ATTACK IS EFFECTIVE ON THE AUTHENTICATOR, N/A: NOT

APPLICABLE AS THE AUTHENTICATOR DOES NOT IMPLEMENT THE SELECTION API.

Authenticator CI1 CI2 CI3 CI4 AC1 AC2 AC3 AC4 AC5 AC6 AC7

YubiKey 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

YubiKey 5 FIPS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Feitian K9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Solo V1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Solo V2 Hacker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OpenSK ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CI1: Factory reset authenticator, CI2: Track user from credentials, CI3: Force authenticator lockout, CI4: Profile authenticator,
AC1: Delete discoverable credentials, AC2: Factory reset authenticator, AC3: Track user from credentials, AC4: Fill authenticator’s

credential storage, AC5: Force authenticator lockout, AC6: Authenticator DoS, AC7: Profile authenticator.

Single Sign-On (SSO), enabling access to multiple ser-
vices. For example, a single set of FIDO2 credentials can
log into Microsoft, OneDrive, Outlook, and Minecraft.
As a consequence, erasing a single credential has a
widespread effect on multiple online services.

CTRAPS toolkit. We evaluated the CI and AC at-
tacks using the tools included in the CTRAPS toolkit.
We installed our two Android apps, found in the CTAP
clients module, on a Google Pixel 2 (OS: Android 11), a
RealMe 11 Pro (OS: Android 14), and a Xiaomi Redmi
Plus 5 (OS: Android 8.1). We used a Proxmark3 RDV4
with a long-range high-frequency antenna to deploy the
proximity CI attack with an extended NFC range. We
tested our Electron app on a Dell Inspiron 15 3502 laptop
(OSes: Ubuntu 22.04.3 LTS and Windows 11 Home) and
on a MacBook Pro M1 (OS: macOS Ventura 13.4).

7.2. Authenticators Results

Table 5 shows the evaluation results for the CI and
AC attacks on six FIDO2 authenticators. All six of them
were vulnerable to the CTRAPS attacks, even the FIPS-
compliant YubiKey. As expected, since we attack CTAP
at the protocol level, the attacks are effective regardless
of the CTAP transport (i.e., USB or NFC), or the authen-
ticator’s software and hardware. However, AC6 does not
apply to the four authenticators which do not support the
Selection API.

We also found a CredMgmt implementation vulner-
ability on the YubiKey 5 and YubiKey 5 FIPS, which
improperly handles the authenticator’s state for CredM
gmt. They allow the client to call CredMgmt(Enum
RpsGetNextRp) without invoking CredMgmt(Enum
RpsBegin) first, which is an illegal state. We exploit
this flaw to achieve a zero-click leak of relying party
names. Our attack calls CredMgmt(EnumRpsGetNex
tRp) to reveal the names of all the relying parties, stored
on the authenticator, except one. This attack bypasses
UV and works regardless of the CredProtect policy. We
reported it to Yubico, which assigned it CVE-2024-35311
and addressed it in their latest firmware. However, since
YubiKeys do not support firmware updates, this fix is
only available to newer authenticators, leaving older ones
vulnerable.

The CI and AC attacks over NFC have a maximum
range of two centimeters on a smartphone. The Proxmark3
built-in antenna also achieved the same range, which we

could extend to six and a half centimeters by attaching
a long-range antenna. Prior work demonstrated that, with
specialized equipment, the NFC range can be extended up
to 50 centimeters [40].

We also tested combinations of CI and AC attacks, to
develop more advanced variants. For example, we found
multiple ways to enhance our user tracking attacks (CI2
and AC3). The attacker can refine the user’s fingerprint
using AC7 or register new credentials, with metadata of
their choice, on the authenticator using AC4.

7.3. Relying Parties Results

As shown in Table 6, we tested eight relying parties
supporting discoverable credentials and two employing
non-discoverable credentials. Our evaluation includes re-
lying parties because our attacks affect them, even though
we do not utilize WebAuthn. For example, AC1 deletes
discoverable credentials, causing the user to lose access to
their online account. Although relying parties using non-
discoverable credentials are not vulnerable to AC1 and
AC4, they remain open to our factory reset, user tracking,
and DoS attacks.

CI1, AC1, and AC2 block web authentication to the
relying party by deleting the user’s FIDO2 credentials.
CI2 and AC3 utilize the user identifiers generated by
the relying party to track users. CI3, AC4, AC5, and
AC6 prevent relying parties from communicating with
the authenticator. Among the relying parties supporting
discoverable credentials, we found that only Microsoft
and Apple employ the weak CredProtect=UVOptional
policy. This policy allows to bypass UV when accessing
credentials. As a result, an attacker can deploy a zero-
click variant of CI2 and AC3 to track users through their
Microsoft and Apple credentials.

8. Discussion

We discuss the countermeasures to fix the CTRAPS
attacks and the issues we found in the FIDO reference
threat model.

8.1. Countermeasures

We discuss eight backward-compliant countermea-
sures fixing the eleven CTRAPS attacks and their associ-
ated eight vulnerabilities. Each countermeasure addresses



TABLE 6. CTRAPS ATTACKS ON TEN RELYING PARTIES. THE FIRST AND SECOND COLUMNS LIST THE RELYING PARTIES’ NAMES AND
IDENTIFIERS. THE THIRD COLUMN HIGHLIGHTS WHETHER THEY REGISTER DISCOVERABLE (DISC, DISCWEAK) OR NON-DISCOVERABLE
(NONDISC) CREDENTIALS. WE INDICATE WITH DISCWEAK A RELYING PARTY USING THE DEFAULT AND WEAK CredProtect=UVOptional

POLICY. COLUMNS FOUR, FIVE, AND SIX SPECIFY THE EFFECT OF EACH ATTACK. N/A: THE ATTACK IS NOT APPLICABLE BECAUSE THE RELYING
PARTY DOES NOT SUPPORT DISCOVERABLE CREDENTIALS.

Rp RpId Cred Delete Creds Track User DoS Authenticator

Adobe adobe.com Disc CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

Apple apple.com DiscWeak CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

DocuSign account.docusign.com NonDisc CI1, AC2 n/a CI3, AC5, AC6

Facebook facebook.com NonDisc CI1, AC2 n/a CI3, AC5, AC6

GitHub github.com Disc CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

Hancock hancock.ink Disc CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

Microsoft login.microsoft.com DiscWeak CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

NVidia login.nvgs.nvidia.com Disc CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

Synology account.synology.com Disc CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

Vault Vision auth.vaultvision.com Disc CI1, AC1, AC2 CI2, AC3 CI3, AC4, AC5, AC6

a specific vulnerability (e.g., C1 fixes V1) and helps
reduce the CTAP attack surface. Although we have not
implemented these countermeasures, we designed them to
be implementable as amendments to the FIDO2 standard
or as FIDO2 extensions. Next, we will describe each
countermeasure.

C1: Trusted CTAP clients. We address V1 by rec-
ommending that the FIDO Alliance provides a list of
trusted CTAP clients. The FIDO ecosystem offers several
certifications, including the FIDO Functional Certifica-
tion [5] which attests to the interoperability of clients,
servers, and authenticators. We suggest extending this
certification to also cover the trustworthiness of CTAP
clients. For instance, FIDO could implement a Software
Bill Of Materials (SBOM) solution to monitor trusted
CTAP clients and their vulnerabilities [64].

C2: Authenticator visual feedback. We address V2
by requiring the authenticator to provide the user with
visual feedback regarding the API that was called. For
instance, the authenticator’s LED could blink once for
non-destructive API calls and twice for destructive ones.
The CTAP wink command, which blinks the LED, must
be disabled during this visual feedback step.

C3: User interaction for UP over NFC. We address
V3 by requiring user interaction during UP checks over
NFC. For example, the user could press a button on the
authenticator to grant UP over NFC, similar to UP checks
over USB.

C4: Dedicated PIN for destructive APIs. We address
V4 by introducing a dedicated PIN to authorize destruc-
tive API calls (e.g., CredMgmt and Reset) and by
repurposing the current PIN to authorize non-destructive
API calls (e.g., Selection and GetInfo). The new
PIN should have the same or stricter requirements as
the non-destructive PIN (i.e., four to sixty-three Unicode
characters [1]).

C5: Dynamic and UV-protected CredId and
UserId. We address V5 by implementing dynamic CredId
and UserId and mandating CredProtect=UVRequired.
CredId and UserId should rotate after a set amount of
logins (e.g., every ten logins) or a time interval (e.g., once
per month). Hence, we raise the bar for user profiling
and tracking attacks on authenticators. Currently, the user
can indirectly change a CredId by calling MakeCred

to generate a new credential for their account, replacing
the old one. However, the user cannot change the UserId,
which is determined by the relying party and, based on
our experience, remains fixed to the user account.

C6: Reset must require UV. We address V6 by re-
quiring UV to call Reset. Hence, the user must authorize
a factory reset by entering a valid PIN.

C7: CredMgmt must require UP. We address V7
by requiring UP to call CredMgmt. Hence, the user must
authorize credential deletion one by one, to avoid deleting
multiple credentials with a single API call.

C8: Rate limiting Selection calls. We address V8
by enforcing temporal rate limiting on Selection to a
maximum of three calls within two minutes. We are not
expecting issues with our rate limiting, akin to the limiting
already existing for ClientPin(GetPinToken), as a
client typically calls Selection once per session.

Usability of the countermeasures. The deployment
of C1 and C8 does not affect usability. C2 requires the
user to notice the authenticator’s visual feedback. Im-
plementing C3 introduces an additional UP check each
time the client connects to the authenticator over NFC,
which is costly. C4 forces the user to remember a second
PIN. C5 introduces one UV and UP check each time the
credential and user identifiers are being rotated out, e.g.,
once per month. The implementation of C6 would require
PIN verification for every call to Reset. C7 would add
a button press each time the CredMgmt API is invoked.

Authenticator with a display. We do not consider
adding a display to a roaming authenticator in the list
of countermeasures as is not backward-compliant and
would require to recall all vulnerable authenticators with-
out a display. Moreover, for newer authenticators, it en-
tails significant hardware and software modifications, such
as adding a secure display, a secure display controller
firmware, and a battery, that would introduce usability,
performance, and cost issues.

8.2. FIDO Reference Threat Model Issues

The FIDO Alliance released a reference threat
model [2] outlining security assumptions, goals, and
threats against clients, authenticators, and relying parties.
Although non-normative, it is the only official source



TABLE 7. COMPARING PRIOR ATTACKS ON FIDO WITH THE CTRAPS ATTACKS. WE ASSIGN EACH ATTACK A COMPLEXITY AND AN IMPACT.
FOR EXAMPLE, THE COMPLEXITY FOR A MITM IS MID, WHEREAS WE CONSIDER SPOOFING A CLIENT AS LOW COMPLEXITY. SIMILARLY,

HIJACKING A SESSION HAS A MID IMPACT, WHILE PERMANENTLY DESTROYING CREDENTIALS CARRIES A HIGH IMPACT.

Attack Class Protocol Transp Surface Impl Reqs Complex Impact

CTAP MitM [33] DH MitM CTAP2.0 All ClientPin ✗ MitM Mid Mid
Privacy leak [33] Eavesdropping CTAP2.0 All MakeCred ✗ n/a Low Low
Auth rebind [33] Auth rebind WebAuthn All Creds.create ✗ n/a High High
Parallel session [33] Session hijack WebAuthn All Creds.get ✗ n/a Mid Mid
ECDSA extract [43] Side channel n/a n/a NXP A7005 ✗ Phy access High High
Titan sign in [13] Relay U2F BLE Google acc ✓ Proximity Mid Mid
Evil maid [47] Phy access n/a n/a Auth TEE ✗ Phy access High High
Auth MitM [9] DH MitM CTAP2.0/2.1 USB ClientPin ✓ Mal browser Mid Mid
Web MitM [9] Session hijack WebAuthn USB Creds.get ✓ Mal browser Mid Mid
Rogue key [9] Auth rebind WebAuthn USB Creds.create ✓ Mal browser Mid High
FIDOLA [50] Session hijack WebAuthn USB Creds.get ✓ Malware High Mid
CTRAPS CI Impersonation CTAP2.0/2.1/2.2 All Auth API ✓ Proximity Low High
CTRAPS AC API confusion CTAP2.0/2.1/2.2 All Auth API ✓ MitM Mid High

detailing the FIDO threat model. After studying it and
working on the CTRAPS attacks, we identified three
issues (IS1, IS2, and IS3) with the FIDO reference threat
model:

IS1: Unclear security boundaries. The threat model
presents six broad security assumptions, but breaks them
when discussing threats. For example, SA-4 states that
the user device and applications involved in a FIDO2
operation act as trustworthy agents of the user. This im-
plies that the client (e.g., browser or mobile app) must
be inherently trusted. However, at the same time, the
threat model includes threats that violate SA-4, such as
T-1.2.1: FIDO client corruption. This leads to unclear
security boundaries, making it difficult to differentiate
trusted components from ones that could be compromised.

IS2: Missing proximity threats. Although FIDO sup-
ports proximity transports like NFC and BLE, its threat
model groups proximity-based threats together with phys-
ical access ones. However, these threats differ in key
aspects. For example, proximity threats have a range.
Consequently, our proximity CI and AC attacks do not
fit within this threat model.

IS3: Security goals are narrow. The security goals of
the threat model are based on [17] (2006) and [12] (2012).
These two research papers outlined the security goals of
an ideal authentication scheme, focusing on password-
based schemes and web authentication. As a result, the
security goals are too narrow to capture the complexities
of the FIDO ecosystem. For example, there are no security
goals for the Authenticator API, that could address the
AC attacks, or discoverable credentials, that are relevant
to AC1, CI1, and AC2.

9. Related Work

We present related work on FIDO, covering existing
attacks, formal analysis, FIDO extensions and enhance-
ments, usability studies, and surveys.

Attacks on FIDO(2). Researchers found attacks on
older FIDO versions (UAF, U2F), such as authenticator
rebinding, parallel sessions, and multi-user attacks [36],
[46], USB HID man-in-the-middle attacks [14], BLE
pairing [13], relying party public key substitution [58],

bypassing push-based 2FA [37], real-time phishing [61],
and side channel attacks [38], [55]. FIDO2 was also
found vulnerable to deception [50], misbinding [66], phys-
ical [43], [47], and rogue key or impersonation attacks [9],
[42]. Moreover, researchers found issues on lower layers
trusted by FIDO2, including an IV reuse on the Samsung
Keystore [59]. No prior attack investigated client imper-
sonation or API confusion on CTAP, including its latest
version.

Formal analysis. The formal analysis and verification
community extensively researched FIDO. The community
formally verified FIDO’s Universal Authentication Frame-
work (UAF) [27], [52], FIDO2 (including its privacy,
revocation, attestation, and post-quantum crypto) [8], [10],
[11], [34]. Yubico proposed a key recovery mechanism
based on a backup authenticator that was proven secure
using the asynchronous remote key generation (ARKG)
primitive [30]. Existing research on formal analysis is not
covering our CI and AC attacks.

Extensions. FIDO supports extensions to add op-
tional features in a backward-compliant way. For instance,
FeIDO [57] proposes an extension to recover a FIDO2
credential using an electronic identifier. Extensions are
not secure by default, and researchers proposed a fix to
protect them against MitM attacks [16]. We suggest to
update the CTAP specification rather than implementing
our countermeasures as FIDO extensions that would be
optional and insecure by design.

Enhancements. Researchers proposed (cryptographic)
enhancements to FIDO protocols. In [31], the authors
present a hybrid post-quantum signature scheme for
FIDO2 and tested it using OpenSK [32] (which we exploit
in this work). In [35], the authors propose a global key re-
vocation procedure for WebAuthn that revokes credentials
without communicating to each individual relying party
WebAuthn server. True2F [22] presented a backdoor-
resistant FIDO U2F design, protecting the authenticator
from a malicious browser by requiring the authenticator
interaction during every authentication, and from finger-
printing by rate limiting credential registration. Proposed
enhancements are not addressing our attacks, which are
effective regardless of the FIDO2 cryptographic primi-
tives.



Usability. Researchers performed extensive usability
studies on FIDO U2F [18], [19], [21], [45], FIDO2 roam-
ing authenticators [24], [51], passkeys [39], and cross-site
2FA [48]. Our paper is orthogonal to usability studies.

Surveys. There are several FIDO survey papers. In [7]
the authors describe the evolution of FIDO protocols, se-
curity requirements, and adoption factors. In [49], the au-
thors surveyed the adoption of passwordless authentication
among a large user base, considering users’ perceptions,
acceptance, and concern with single-factor authentication
without passwords. Our paper is orthogonal to surveys.

10. Conclusion

No prior work assessed the CTAP Authenticator API,
a critical surface exposed by a client to an authenticator
to manage, create, and delete credentials. We address this
gap by presenting the first security and privacy evaluation
of the CTAP Authenticator API. We uncover two classes
of protocol-level attacks that abuse it. The CI attacks spoof
a CTAP client to a target authenticator. The AC attacks
leverage a MitM position to change CTAP API calls made
by the user to an API desired by the attacker while stealing
their authorizations. They utilize API confusion, a novel
attack strategy within FIDO2.

We uncover eleven CI and AC attacks, impacting
millions of FIDO2 users. They can be deployed by
a proximity-based or a remote attacker. For example,
they delete FIDO2 credentials and master keys (security
breach) and track users through their credentials (privacy
breach). Our attacks are effective on the entire FIDO2
ecosystem as they target eight vulnerabilities we discov-
ered in the CTAP specification. These flaws include the
lack of CTAP client authentication and improper API
authorizations. The CTRAPS attacks are low-cost, as they
do not require specialized equipment, and stealthy, as they
do not trigger unexpected user interactions.

We develop the CTRAPS toolkit to test our attacks
with a cheap setup. It includes a CTAP testbed with
a virtual relying party and a virtual client, four CTAP
clients that deploy our attacks (e.g., Android apps and
Proxmark3 scripts), and an enhanced Wireshark dissector
for CTAP. We successfully exploit six authenticators and
ten relying parties from leading FIDO2 players such as
Yubico, Feitian, Google, Microsoft, and Apple. We design
eight legacy-compliant countermeasures to fix our attacks
and their root causes.

We share three lessons we learned about FIDO2 cre-
dential storage and passwordless-ness, which are valuable
for the current transition from single-factor authentication
to 2FA and passkeys [20], [56]: (i) Being stored on the au-
thenticator, FIDO2 discoverable credentials are protected
from third-party data breaches. However, this introduces
new attacks that work exclusively on discoverable cre-
dentials (i.e., CI2, AC1, AC3, and AC4). (ii) FIDO2 users
cannot prevent attacks targeting discoverable credentials,
as they cannot choose the type of credentials they register
and their protection policies, decided by the relying party
and the client instead. (iii) The FIDO2 core message is to
steer away from passwords because they are vulnerable
to phishing. However, digging deeper, we realized that
FIDO2 still relies on phishable mechanisms, even for
passwordless authentication. For instance, a passwordless

credential is protected by an alphanumeric PIN (i.e., a
phishable sequence the user must remember).

Acknowledgment

Work funded by the European Union under grant
agreement no. 101070008 (ORSHIN project). Views and
opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting au-
thority can be held responsible for them. Moreover, it has
been partially supported by the French National Research
Agency under the France 2030 label (NF-HiSec ANR-
22-PEFT-0009) and the Apricot/ENCOPIA ANR MESRI-
BMBF project (ANR-20-CYAL-0001).

References

[1] FIDO Alliance. CTAP 2.1 Proposed Standard with Errata. https:
/ /fidoalliance.org/specs /fido- v2.1- ps- 20210615/fido- client - to-
authenticator-protocol-v2.1-ps-errata-20220621.html, 2022.

[2] FIDO Alliance. FIDO Security Reference, Review Draft 23 May
2022. https://fidoalliance.org/specs/common-specs/fido-security-
ref-v2.1-ps-20220523.pdf, 2022.

[3] FIDO Alliance. CTAP 2.2 Review Draft 01. https : / /
fidoalliance.org / specs / fido - v2.2 - rd - 20230321 / fido - client - to -
authenticator-protocol-v2.2-rd-20230321.html, 2023.

[4] FIDO Alliance. FIDO Alliance Specifications Overview. https:
//fidoalliance.org/specifications, 2024.

[5] FIDO Alliance. FIDO Functional Certification. https : / /
fidoalliance.org/certification/functional-certification/, 2024.

[6] FIDO Alliance. FIDO Security Secretariat. https://fidoalliance.org/
certification/secretariat/, 2024.

[7] Anna Angelogianni, Ilias Politis, and Christos Xenakis. How many
FIDO protocols are needed? Surveying the design, security and
market perspectives. arXiv preprint arXiv:2107.00577, 2021.

[8] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan
Warinschi. Provable security analysis of FIDO2. In Advances in
Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part III 41, pages 125–156, 2021.

[9] Manuel Barbosa, André Cirne, and Luı́s Esquı́vel. Rogue key
and impersonation attacks on FIDO2: From theory to practice. In
Proceedings of the 18th International Conference on Availability,
Reliability and Security. Association for Computing Machinery,
2023.

[10] Nina Bindel, Cas Cremers, and Mang Zhao. FIDO2, CTAP 2.1, and
WebAuthn 2: Provable security and post-quantum instantiation. In
2023 IEEE Symposium on Security and Privacy (SP), pages 1471–
1490. IEEE, 2023.

[11] Nina Bindel, Nicolas Gama, Sandra Guasch, and Eyal Ronen. To
attest or not to attest, this is the question–Provable attestation in
FIDO2. Cryptology ePrint Archive, 2023.

[12] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank
Stajano. The quest to replace passwords: A framework for com-
parative evaluation of web authentication schemes. In 2012 IEEE
symposium on security and privacy, pages 553–567. IEEE, 2012.

[13] Christiaan Brand. Advisory: Security Issue with Blue-
tooth Low Energy (BLE) Titan Security Keys. https : / /
security.googleblog.com/2019/05/titan-keys-update.html, 2019.

[14] Thanh Bui, Siddharth Prakash Rao, Markku Antikainen,
Viswanathan Manihatty Bojan, and Tuomas Aura. Man-in-
the-Machine: Exploiting Ill-Secured Communication Inside the
Computer. In 27th USENIX security symposium (USENIX Security
18), pages 1511–1525, 2018.

[15] Bulkwarkid. Virtual FIDO. https://github.com/bulwarkid/virtual-
fido, 2025.



[16] Andre Büttner and Nils Gruschka. Protecting FIDO Extensions
Against Man-in-the-Middle Attacks. In International Workshop
on Emerging Technologies for Authorization and Authentication,
pages 70–87. Springer, 2022.

[17] Tsai Chwei-Shyong, Lee Cheng-Chi, and Min-Shiang Hwang.
Password Authentication Schemes: Current Status and Key Issues.
International Journal of Network Security, 2006.

[18] Stéphane Ciolino, Simon Parkin, and Paul Dunphy. Of Two Minds
about Two-Factor: Understanding Everyday FIDO/U2F Usability
through Device Comparison and Experience Sampling. In Fifteenth
Symposium on Usable Privacy and Security (SOUPS 2019), pages
339–356, 2019.

[19] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse Swoopes,
Lujo Bauer, Lorrie Cranor, and Nicolas Christin. “It’s not actually
that horrible” Exploring Adoption of Two-Factor Authentication
at a University. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pages 1–11, 2018.

[20] Mike Hanley (GitHub CSO). Securing millions of developers
through 2FA. https://github.blog/2024-04-24-securing-millions-
of-developers-through-2fa/, 2024.

[21] Sanchari Das, Andrew Dingman, and L Jean Camp. Why Johnny
doesn’t use two factor a two-phase usability study of the FIDO
U2F security key. In International Conference on Financial
Cryptography and Data Security, pages 160–179. Springer, 2018.

[22] Emma Dauterman, Henry Corrigan-Gibbs, David Mazières, Dan
Boneh, and Dominic Rizzo. True2F: Backdoor-resistant authenti-
cation tokens. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 398–416, 2019.

[23] Android developers. Android NFC basics. https : / /
developer.android.com/develop/connectivity/nfc/nfc, 2023.

[24] Florian M Farke, Lennart Lorenz, Theodor Schnitzler, Philipp
Markert, and Markus Dürmuth. You still use the password after all–
Exploring FIDO2 Security Keys in a Small Company. In Sixteenth
Symposium on Usable Privacy and Security (SOUPS 2020), pages
19–35, 2020.

[25] Feitian. Feitian Android App. https://play.google.com/store/apps/
details?id=com.ft.entersafe.iepassmanager, 2022.

[26] Feitian. Feitian iOS App. https : / / apps.apple.com / us / app /
iepassmanager/id1504200260, 2022.

[27] Haonan Feng, Hui Li, Xuesong Pan, Ziming Zhao, and T Cactilab.
A Formal Analysis of the FIDO UAF Protocol. In Network &
Distributed System Security Symposium (NDSS’21), 2021.

[28] FIDO Alliance. U.S. General Services Administration’s Rollout of
FIDO2 on login.gov. https://fidoalliance.org/u-s-general-services-
administrations-rollout-of-fido2-on-login-gov/, 2023.

[29] FIDO Alliance. FIDO Alliance Publishes New Specifications to
Promote User Choice and Enhanced UX for Passkeys. https:
//fidoalliance.org/fido- alliance- publishes- new- specifications- to-
promote-user-choice-and-enhanced-ux-for-passkeys, 2024.

[30] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lund-
berg, Mark Manulis, and Dain Nilsson. Asynchronous Remote Key
Generation: An Analysis of Yubico’s Proposal for W3C WebAuthn.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 939–954, 2020.

[31] Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien
Cretin, Rafael Misoczki, Stefan Kölbl, Luca Invernizzi, Elie
Bursztein, and Jean-Michel Picod. Hybrid post-quantum signatures
in hardware security keys. In 4th ACNS Workshop on Secure
Crytographic Implmentation, 2023.

[32] Google. OpenSK: a Rust Implementation of a FIDO2 Authentica-
tor. https://github.com/google/OpenSK, 2024.

[33] Jingjing Guan, Hui Li, Haisong Ye, and Ziming Zhao. A Formal
Analysis of the FIDO2 Protocols. In European Symposium on
Research in Computer Security (ESORICS), pages 3–21, 2022.

[34] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Token meets
wallet: Formalizing privacy and revocation for FIDO2. In 2023
IEEE Symposium on Security and Privacy (SP), pages 1491–1508.
IEEE, 2023.

[35] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Token meets
Wallet: Formalizing Privacy and Revocation for FIDO2. In 2023
IEEE Symposium on Security and Privacy (SP), pages 1491–1508,
2023.

[36] Kexin Hu and Zhenfeng Zhang. Security analysis of an attrac-
tive online authentication standard: FIDO UAF protocol. China
Communications, 13(12):189–198, 2016.

[37] Mohammed Jubur, Prakash Shrestha, Nitesh Saxena, and Jay
Prakash. Bypassing push-based second factor and passwordless
authentication with human-indistinguishable notifications. In Pro-
ceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, pages 447–461, 2021.

[38] Michal Kepkowski, Lucjan Hanzlik, Ian Wood, and Mohamed Ali
Kaafar. How Not to Handle Keys: Timing Attacks on FIDO
Authenticator Privacy. In Proceedings on Privacy Enhancing
Technologies, volume 4, pages 705–726, 2022.

[39] Michal Kepkowski, Maciej Machulak, Ian Wood, and Dali Kaafar.
Challenges with Passwordless FIDO2 in an Enterprise Setting: A
Usability Study. arXiv preprint arXiv:2308.08096, 2023.

[40] Ziv Kfir and Avishai Wool. Picking Virtual Pockets using Relay At-
tacks on Contactless Smartcard. In First International Conference
on Security and Privacy for Emerging Areas in Communications
Networks (SECURECOMM’05), pages 47–58, 2005.

[41] David Kierznowski. BadUSB 2.0. https://github.com/withdk/
badusb2-mitm-poc, 2016.

[42] Dhruv Kuchhal, Muhammad Saad, Adam Oest, and Frank Li.
Evaluating the Security Posture of Real-World FIDO2 Deploy-
ments. In Proceedings of the ACM conference on computer and
communications security (CCS), 2023.

[43] Ninja Lab. A Side Journey to Titan. https://ninjalab.io/a-side-
journey-to-titan, 2024.

[44] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and
Sampath Srinivas. Security keys: practical cryptographic second
factors for the modern web. In International Conference on Fi-
nancial Cryptography and Data Security, pages 422–440. Springer,
2016.

[45] Leona Lassak, Annika Hildebrandt, Maximilian Golla, and Blase
Ur. It’s Stored, Hopefully, on an Encrypted Server: Mitigating
Users’ Misconceptions About FIDO2 Biometric WebAuthn. In
30th USENIX Security Symposium (USENIX Security 21), pages
91–108, 2021.

[46] Hui Li, Xuesong Pan, Xinluo Wang, Haonan Feng, and Chengjie
Shi. Authenticator rebinding attack of the UAF protocol on
mobile devices. Wireless Communications and Mobile Computing,
2020:1–14, 2020.

[47] Victor Lomne. An Overview Of The Security Of Some Hard-
ware FIDO(2) Tokens. https : / / www.youtube.com / watch?v =
hpOp9X4sMaE, 2022.

[48] Sanam Ghorbani Lyastani, Michael Backes, and Sven Bugiel. A
systematic study of the consistency of two-factor authentication
user journeys on top-ranked websites. In 30th Annual Network &
Distributed System Security Symposium (NDSS’23), 2023.

[49] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr,
Michael Backes, and Sven Bugiel. Is FIDO2 the Kingslayer of
User Authentication? A Comparative Usability Study of FIDO2
Passwordless Authentication. In IEEE Symposium on Security and
Privacy, pages 268–285, 2020.

[50] Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena.
Breaching Security Keys without Root: FIDO2 Deception Attacks
via Overlays exploiting Limited Display Authenticators. In Pro-
ceedings of the ACM conference on computer and communications
security (CCS), 2024.

[51] Kentrell Owens, Olabode Anise, Amanda Krauss, and Blase Ur.
User Perceptions of the Usability and Security of Smartphones as
FIDO2 Roaming Authenticators. In Seventeenth Symposium on
Usable Privacy and Security (SOUPS 2021), pages 57–76, 2021.

[52] Olivier Pereira, Florentin Rochet, and Cyrille Wiedling. Formal
analysis of the FIDO 1.x protocol. In Foundations and Practice of
Security: 10th International Symposium, FPS 2017, Nancy, France,
October 23-25, 2017, Revised Selected Papers 10, pages 68–82.
Springer, 2018.



[53] UACMe Project. UACME. https://github.com/hfiref0x/UACME,
2025.

[54] Proxmark. Proxmark RFID Tool. https://proxmark.com, 2024.

[55] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent
Imbert. A Side Journey to Titan. In 30th USENIX Security
Symposium (USENIX Security 21), pages 231–248, 2021.

[56] Google Safety and Security. The beginning of the end of the
password. https: / /blog.google/ technology/safety- security/ the-
beginning-of-the-end-of-the-password/, 2023.

[57] Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, and
Christian Rossow. FeIDo: Recoverable FIDO2 Tokens Using Elec-
tronic IDs. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2581–2594,
2022.

[58] Michael Scott. FIDO–That Dog Won’t Hunt. In Security and
Privacy in New Computing Environments: EAI Conference, SPNCE
2020, pages 255–264. Springer, 2021.

[59] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust Dies in
Darkness: Shedding Light on Samsung’s TrustZone Keymaster
Design. In 31st USENIX Security Symposium (USENIX Security
22), pages 251–268, 2022.

[60] Transparency Market Research. FIDO Authentication Mar-
ket Forecast. https://www.transparencymarketresearch.com/fido-
authentication-market.html, 2023.

[61] Enis Ulqinaku, Hala Assal, AbdelRahman Abdou, Sonia Chiasson,
and Srdjan Capkun. Is Real-time Phishing Eliminated with FIDO?
Social Engineering Downgrade Attacks against FIDO Protocols. In
30th USENIX Security Symposium (USENIX Security 21), pages
3811–3828, 2021.

[62] Rijnard van Tonder and Herman Engelbrecht. Lowering the USB
Fuzzing Barrier by Transparent Two-Way Emulation. In 8th
USENIX Workshop on Offensive Technologies (WOOT 14), 2014.

[63] W3C. Web Authentication: An API for accessing Public Key
Credentials - Level 2. https://www.w3.org/TR/webauthn-2, 2021.

[64] Wei Wu, Pu Wang, Lei Zhao, and Wei Jiang. An Intelligent Secu-
rity Detection and Response Scheme Based on SBOM for Securing
IoT Terminal devices. In 2023 IEEE 11th International Conference
on Information, Communication and Networks (ICICN), pages
391–398, 2023.

[65] Peng Xu, Ruijie Sun, Wei Wang, Tianyang Chen, Yubo Zheng,
and Hai Jin. Sdd: A trusted display of fido2 transaction confir-
mation without trusted execution environment. Future Generation
Computer Systems, 125:32–40, 2021.

[66] Tarun Kumar Yadav and Kent Seamons. A Security and Usability
Analysis of Local Attacks Against FIDO2. In 31th Annual Network
& Distributed System Security Symposium (NDSS’24), 2024.

[67] Yubico. Q3 Interim Report. https : / / investors.yubico.com /
en/wp- content /uploads /sites /2 /2023/03/Q3- investor- morning-
presentation-231110.pdf, 2023.

[68] Yubico. Yubico FIDO2 Python Library. https://github.com/Yubico/
python-fido2, 2023.

[69] Yubico. Yubikey Manager CLI. https: / /github.com/Yubico/
yubikey-manager, 2023.

[70] Yubico. CVE-2024-35311. https : / / cve.mitre.org / cgi - bin /
cvename.cgi?name=CVE-2024-35311, 2024.

[71] Yubico. Security Advisory YSA-2024-02 FIDO Relying Party Enu-
meration. https://www.yubico.com/support/security- advisories/
ysa-2024-02, 2024.

[72] z4yx. FIDO Wireshark protocol dissectors over USB HID. https:
/ / gist.github.com / z4yx / 218116240e2759759b239d16fed787ca,
2019.

Appendix A.
Data Availability

All experiments in this study were conducted ethically
and solely on authenticators and accounts under our con-
trol, with no involvement of third-party personal data. To

support reproducibility and advance open science, we are
releasing our artifacts, including the CTRAPS toolkit. Our
toolkit is hosted in a repository at https://github.com/Skiti/
CTrAPs. We already responsibly disclosed our findings to
all affected parties, including the FIDO Alliance, and we
respected their timeline.


