
CheckOCPP: Automatic OCPP Packet Dissection and Compliance Check

Soumaya Boussaha
SAP, EURECOM

Biot, France
soumaya.boussaha@sap.com

Victor Fresno Gómez
EURECOM, UPM

Madrid, Spain
victorfresno@live.com

Thomas Barber
SAP

Baden-Wurtemberg, Germany
thomas.barber@sap.com

Daniele Antonioli
EURECOM
Biot, France

daniele.antonioli@eurecom.fr

Abstract—As the adoption of electric vehicles (EVs) grows,
ensuring compliance and security in EV charging infrastruc-
ture is critical. The Open Charge Point Protocol (OCPP)
is the de facto standard for communication between EV
charging stations and central management systems. However,
verifying real-world implementations for protocol adherence
and security remains challenging. We introduce CheckOCPP,
an OCPP dissector integrated with Wireshark, designed
to detect OCPP versions (1.6, 2.0, and 2.0.1), validate
message structures against predefined compliant schemas,
and flag non-compliant or malformed packets in real-time.
CheckOCPP is built using Lua and leverages the Mobility
House Python OCPP open-source library. As a dissector,
CheckOCPP can be used for compliance verification and
security analysis. Our evaluation demonstrates its effective-
ness in dissecting and validating OCPP 1.6, 2.0, and 2.0.1
traffic, including detecting non-compliant behaviors against
simulated malformed packets and EmonEVSE, an actual
charging station.

1. Introduction

The Open Charge Point Protocol (OCPP) is the de
facto standard for communication between electric ve-
hicles (EVs), charging stations (CSs), often referred to
as Charge Points (CPs), and central management systems
(CSMSs) [18]. OCPP enables remote monitoring, session
control, firmware updates, and billing integration. It allows
operators to manage access to CPs, track energy con-
sumption, and apply pricing models. Since its inception in
2009, OCPP has been updated with features and security
mechanisms. Most notably, OCPP 1.6 and OCPP 2.0.1
accommodate smart charging and security profiles.

Despite OCPP’s widespread adoption, practical chal-
lenges remain in achieving and verifying OCPP com-
pliance. Inconsistent or incomplete implementations can
lead to security vulnerabilities and unexpected behaviors.
Researchers, security analysts, and compliance auditors
struggle to pinpoint these issues, especially in production
environments, due to the lack of dedicated tools. The ex-
isting OCPP Compliance Test Tool (OCTT) [19] is closed-
source, accessible behind a cost barrier (C3,000–C18,000
per OCPP version), and requires conducting predefined

active tests against the CS or CSMS. This approach is not
best suited for all use cases, including post-deployment
audits.

Multiple studies have examined the security land-
scape of OCPP on production systems, uncovering various
threats, including man-in-the-middle (MitM) attacks, re-
play attacks, message tampering, authentication flaws, and
denial-of-service (DoS) [5], [11], [17], [20], [21]. How-
ever, no paper has provided dedicated tooling for OCPP
traffic dissection, unlike similar protocols with dedicated
dissectors (e.g., MQTT [24] and Modbus [23]). OCPP
lacks a valuable tool for security assessments, allowing
OCPP compliance checks. Ideally, the tool should be
passive, i.e., observe OCPP packets flowing in the network
or from a pcap and black-box, i.e., work without knowing
the internals of the CS or CSMS under test.

To address these concerns, we propose CheckOCPP,
an OCPP toolkit designed for dissection, compliance au-
diting, testing, and security analysis of OCPP implemen-
tations. Our tool works in a black-box manner without
the need to access CP or CSMS implementations. By
dissecting OCPP traffic, CheckOCPP automatically iso-
lates the OCPP versions and packet components, including
sensitive data, and evaluates their compliance against a
schema.

We tested CheckOCPP against all OCPP versions and
popular OCPP implementations. We evaluated a Mobility
House [12] based simulation for OCPP 2.0 and 2.0.1. The
Mobility House provides an open-source OCPP library
for simulating charge point and central system behavior.
We tested it against the EmonEVSE [4] CS for OCPP1.6,
which is used in production systems. EmonEVSE is an
open-source charge controller for electric vehicle supply
equipment (EVSE) hardware.

CheckOCPP has proven to accurately dissect and
analyze OCPP packets across versions 1.6, 2.0, and
2.0.1. It identified four key issues, including three non-
compliant behaviors across different implementations.
In the EmonEVSE device [4], a physical charging
point used in production environments and implementing
OCPP 1.6, CheckOCPP detected a violation where a
GetConfiguration request containing a key exceed-
ing the 50-character limit was improperly accepted.

In an OCPP 2.0 setup using a simulated charging

Figure 1. EV charging backend eco-system.

station and the Mobility House library [12], it flagged
a malformed BootNotification message with a
25-character CS model name, exceeding the specifica-
tion’s 20-character limit. A similar simulation environ-
ment for OCPP 2.0.1 revealed another compliance issue,
where an undefined certificate type was included in an
InstallCertificate request.

Beyond compliance testing, CheckOCPP also ex-
posed a security concern by successfully extracting sen-
sitive authentication data (idToken) in plaintext from a
ReserveNow message, emphasizing the risks of deploy-
ing OCPP systems without TLS encryption.

We summarize our contributions as follows:
• We present CheckOCPP, a novel OCPP toolkit that

integrates with Wireshark to dissect, parse, and
analyze all OCPP versions.

• CheckOCPP checks message payloads against
compliant schema definitions, automatically de-
tecting noncompliant or malformed OCPP packets.

• We validated CheckOCPP in an evalaution against
Mobility House (OCPP 2.0 & 2.0.1) [12] and
EmonEVSE (OCPP 1.6) [4]. We open-source our
tool at https://github.com/vfg27/CheckOCPP.

2. Background

This section presents background information about
OCPP, Wireshark, OpenEVSE, and IPmininet.

2.1. OCPP

The Open Charge Point Protocol (OCPP) [1] is an
open communication standard to ensure interoperability
between CS and centralized management entities. Cen-
tralized management entities typically include charging
station operators (CSOs), as in Figure 1, which oversee
the deployment, maintenance, and operation of the charg-
ing infrastructure. Charging station management systems
(CSMSs) provide the software platforms to monitor, con-
trol, and optimize charging station performance.

OCPP has three main versions: 1.6, 2.0, and 2.0.1,
maintained by the Open Charge Alliance (OCA). OCPP
1.6. [1], [18], introduced in 2015, marked a milestone for
OCPP by improving functionality and expanding its ap-
plicability across the electric vehicle charging ecosystem.
Widely adopted by CS manufacturers and CSMSs, this
release introduced key features such as SOAP and JSON
support, intelligent charging capabilities for load balanc-
ing and profile management, enhanced status updates, and
local list management.

In 2020, the whitepaper publication Improved Secu-
rity for OCPP 1.6-J standardized the implementation of
advanced security measures inspired by more modern
versions of the OCPP. These enhancements include se-
cure connection establishment, security event logging, and
secure firmware updates, enabling developers to create
robust and secure implementations of OCPP 1.6-J.

OCPP 2.0 [18], released in 2018, was the first in
the 2.x series, developed with industry collaboration. For
functional specification issues, it was quickly superseded
by OCPP 2.0.1 [18], released in 2020. The latter re-
solves issues in OCPP 2.0, such as incompatible machine-
readable schema definition files. Moreover, OCPP 2.0.1
introduces better device and transaction management and
strengthened security measures. It also supports ISO
15118 [18], a vehicle-to-grid charging standard.

OCPP defines three security profiles to ensure secure
communication [2], [7]. Security Profile 1 represents the
basic level, which mandates client (CS) authentication
using a password but does not require authenticating the
server (CSMS) and encrypting the traffic [2], [7]. Security
Profile 2 improves over the prior one by introducing
Transport Layer Security (TLS) for channel encryption
and server certificate validation for server authentication
while using a password for client authentication over a
TLS channel [2], [7].

Security Profile 3 employs TLS with client and server
certificates to achieve mutual authentication [2], [7]. The
CS and CSMS must use TLS v1.2 or higher. ECDHE key
agreement is recommended over RSA because it provides
forward secrecy. Deprecated or insecure cipher suites shall
not be used. TLS compression methods are prohibited to
prevent side-channel attacks.

OCPP is based on WebSocket [1], [18], an application
layer protocol standardized by the IETF as RFC 6455 [8]
in 2011. WebSocket enables full-duplex communication
between clients and servers over a single TCP connection.
Unlike traditional HTTP, which follows a request-response
model, WebSocket allows for bidirectional interactions,
facilitating real-time data exchange with reduced latency
and overhead. This protocol is particularly beneficial for
applications such as electric charging and billing where
timely data transmission is crucial.

OCPP packets follow an array format with the follow-
ing message fields:

• Type: message type (2=Request, 3=Response,
4=Error).

• ID: a unique identifier, typically a random UUID.
• Name: present only for requests.
• Payload: the message data.

2.2. Wireshark

Wireshark [9] is a popular open source network pro-
tocol analyzer. It enables real-time packet capture, dissec-
tion, and inspection. It supports several protocols, such
as TCP, UDP, HTTP, and TLS, making it an essential
tool for network security research and troubleshooting.
By applying filters and analyzing traffic patterns, users
can detect anomalies, manage problems, and examine en-
crypted communications if they have the necessary keys.
Wireshark allows the integration of custom dissectors
using Lua and currently does not have an OCPP dissector.

https://github.com/vfg27/CheckOCPP

Figure 2. EmonEVSE WiFi Connected EV Charging Station.

In network traffic analysis, dissection refers to sys-
tematically breaking down network packets and flows to
extract meaningful insights regarding communication pat-
terns, protocols, and potential security threats. A dissector
is a tool or module to interpret and analyze network proto-
cols, often integrated into traffic analysis frameworks such
as Wireshark [23], [24]. These dissectors parse protocol
headers, payloads, and metadata, facilitating deep packet
inspection (DPI) and anomaly detection.

Wireshark supports dissectors written in Lua [16], a
programming language and lightweight scripting engine
designed to integrate into applications. Lua’s core fea-
tures include dynamic typing, first-class functions, and
versatile table-based data structures. Lua dissectors are
more adaptable than those written in C because they
are interpreted (other than compiled) and have simpler
semantics (comparable to Python).

2.3. OpenEVSE

OpenEVSE [4] is an open-source platform offering
a CS and mobile application in Figure 2. Developed
initially to generate the SAE J1772 pilot signal, it has
become a widely used technology in charging stations
worldwide, offering scalability and customization for
hardware and software. Thanks to its open architecture,
OpenEVSE allows manufacturers and developers to create
custom charging solutions, from standard products (e.g.,
EmonEVSE [3]) to DIY kits. Its features include a WiFi
module, which facilitates monitoring, control, and integra-
tion with home automation systems, HTTP, and MQTT.

2.4. IPmininet

IPMininet [22] is an extension of the Mininet [15] net-
work emulator. IPMininet and Mininet are based on Linux
containers and allow the emulation of complex (Internet-
like) networks using a single Linux kernel. A virtual
network includes hosts, switches, controllers, routers, and
links. Mininet is compatible with IPv4, while IPMininet
extends the compatibility to IPv6.

3. Design

In this section, we motivate our work and present the
design of CheckOCPP.

3.1. Motivation

Several studies have explored the security landscape of
OCPP, identifying Vulnerabilities and attacks (e.g., man-
in-the-middle (MitM), replay attacks, message tampering,
authentication weaknesses, and DoS) [5], [11], [17], [20],
[21]. Despite the research on OCPP, there is no OCPP
toolkit to dissect, parse, analyze, and check the compli-
ance of OCPP packets.

A toolkit is needed because deployed OCPP versions
(1.6, 2.0, and 2.0.1) introduce new packets, schemas,
and security features, and they can even co-exist in the
same network. Moreover, OCPP is fragmented as not all
vendors upgrade their infrastructure uniformly. Vendors
also customize OCPP deployment, e.g., by introducing
proprietary authentication mechanisms [11], further in-
creasing the presence of non-compliant and vulnerable
OCPP deployments.

OCPP packet dissection would enhance security as-
sessments by isolating sensitive information, such as au-
thentication tokens, charging point passwords, and facili-
tating security testing. Furthermore, packet dissection is
already used for other protocols like MQTT [24] and
Modbus [23] and has been proven helpful for security
and traffic analysis. Thus, adopting an OCPP dedicated
dissector for each OCPP version would help tackle the
challenges of validating OCPP implementations’ compli-
ance and testing their security robustness.

Despite OCPP’s popularity, there are no open-source
compliance checkers for OCPP. When it comes to verify-
ing OCPP compliance, auditors have the choice of using
the OCPP Compliance Test Tool (OCTT) [19], which
requires active testing of a set of pre-defined scenar-
ios against CPs and CSMS. However, OCTT is closed-
source [19] and comes with a significant paywall of 3000-
18000C per single protocol version. Furthermore, it is
unsuited for passive audits, where compliance is assessed
without direct interaction with the system under test. A
passive audit is beneficial in scenarios where interference
with a system is undesirable, such as in production envi-
ronments.

To address these gaps, we introduce CheckOCPP, a
toolkit capable of dissecting OCPP packets regardless of
their version, and checking OCPP compliance. The toolkit
can work in passive and active modes and does not require
prior knowledge of the tested OCPP clients (CSs) and
servers (CSMSs).

3.2. CheckOCPP

CheckOCPP is an OCCP toolkit with dissection and
compliance checking capabilities. The tool can sniff the
traffic in a (production) OCPP network and analyze the
OCPP packets as shown in Figure 3. To dissect OCPP
packets when TLS is in place (security levels two or
three [7]), the TLS key is needed first to decrypt the
packets before parsing and compliance checking.

CheckOCPP supports the JSON implementation of
OCPP, while SOAP support can be added with minimal
engineering effort by integrating the XML-based SOAP
packet schemas. This choice reflects the industry’s pref-
erence for JSON, which offers better compatibility with
modern frameworks than SOAP.

Figure 3. OCPP Communication and CheckOCPP traffic dissection.

Dissection. The dissection process is the following: after
capturing traffic, CheckOCPP looks first for WebSocket
packets, then filters packets with the desired protocol
(1.6, 2.0, or 2.0.1) in the WebSocket protocol information.
CheckOCPP matches the observed data structure against
OCPP-compliant schemas tables, each associated with an
OCPP version. The dissector infers the specific OCPP
version associated with each packet through this process.
Furthermore, it organizes the packet content based on
schema in an intuitively accessible way.

Compliance Check. CheckOCPP automatically validates
the dissected packets against the OCPP specification. In
cases where the payload does not align with the predefined
schema definitions, CheckOCPP flags the message as non-
compliant. It highlights the non-compliant packet and the
error concerning the expected compliant schema. To verify
compliance, CheckOCPP validates the dissected fields
of the packet against the expected up-to-date compliant
schema. The compliance verification through the Check-
OCPP can be conducted in a passive setup, making it a
suitable choice for use cases where no intervention in the
traffic is desired.

Security Analysis. The tool can be used for active security
analysis on the target OCPP network. Once the traffic is
dissected, CheckOCPP can change a packet payload on
the fly, facilitating attack scenarios such as man-in-the-
middle, replay, or injection. This highlights its relevance
as a diagnostic tool and a means to assess the impact of
insecure deployments.

4. Implementation

Next, we describe how we implemented CheckOCPP’s
parsing and compliance check logic.

4.1. Parsing

We implemented CheckOCPP using Lua [16] and
Wireshark’s WebSocket dissector [9]. As shown in Figure
4, the tool loads the OCPP message schemas from the
Mobility House library [12]. These schemas are used
to check the structure of the dissected packages. The
schemas are organized into three distinct tables, corre-
sponding to OCPP versions 1.6, 2.0, and 2.0.1.

Figure 4. CheckOCPP diagram.

Figure 5. CheckOCPP deployment for OCPP 1.6 evaluation against the
EmonEVSE device.

Since OCPP message payloads are formatted as JSON
and Lua lacks native JSON support, the open-source cjson
plugin [6] is used to parse the payloads into Lua tables.
A Lua table is a structure that represents arrays or dic-
tionaries. The parsed packets include their message type,
identifier, message name (if applicable), and the OCPP
payload.

4.2. Compliance check

CheckOCPP passes the tables containing the parsed
OCPP packets to jsonchema [14], an open-source Lua
plugin we use to generate OCPP validation functions
stored in a separate table. The parsed OCPP payloads
are passed through the corresponding validation function,
which determines whether they adhere to the expected
schema.

As shown in Figure 4, the validation function returns
two outputs: Valid or Error. If the payload is Valid, the
dissector adds the information to the Wireshark tree and
marks the packet compliant. If there is an Error, the error
is added to the tree, and the packet is flagged as non-
compliant in red as malformed packets using the Expert
information dialog [10], a Wireshark-compatible solution
to highlight packets for errors and warnings.

5. Evaluation

This section presents the evaluation setup and results
of CheckOCPP.

5.1. Setup

OCPP 1.6. We tested a EmonEVSE CS (client) based
on OpenEVSE in a lab environment (Figure 5). The
CSMS (server) was implemented using the Python-based
Mobility House library for OCPP 1.6. This setup evaluated
CheckOCPP’s ability to dissect OCPP 1.6 traffic and
verify the compliance of the client and server implemen-
tations.

Figure 6. CheckOCPP deployment for OCPP 2.0.1 evaluation using
Mobility House and IP-Mininet.

Figure 7. Non-compliant OCPP 1.6 packet detected in EmonEVSE
traffic.

OCPP 2.0, 2.0.1. We developed an OCPP emulation
scenario using IP-Mininet [22]. The virtual OCPP CSs and
CSMSs use the OCPP 2.0 and 2.0.1 implementations from
the Mobility House Python library [12] (Figure 6). This
setup enabled controlled message exchanges and deliber-
ate injection of malformed packets to test CheckOCPP’s
compliance-checking capabilities. It also validated the
tool’s ability to isolate security-sensitive OCPP data.

5.2. Results

CheckOCPP successfully identified three non-
compliant messages, including an improperly formatted
GetConfiguration response in OCPP 1.6 for
the EmonEVSE device [4]. Next, we describe the
experimental results in more detail.

OCPP 1.6. Using CheckOCPP, we identified non-
compliant OCPP 1.6 behavior in the EmonEVSE charging
point. For example, the GetConfiguration message,
used to retrieve parameters from the CS, requires parame-
ters to adhere to predefined length restrictions under OCPP
1.6. As shown in Figure 7, we queried an artificially
crafted variable with an excessively long name exceed-
ing 50 characters. A compliant CS should reject such
requests, but the EmonEVSE responded to this invalid
query. CheckOCPP captured this exchange and flagged
the non-compliant packets.

OCPP 2.0 and 2.0.1. We also tested CheckOCPP with
OCPP 2.0 traffic. As shown in Figure 8, CheckOCPP
correctly identified and parsed OCPP 2.0 packets. We
then evaluated CheckOCPP with OCPP 2.0.1, including
mixed traffic containing both OCPP 2.0 and 2.0.1 packets
(Figure 9). CheckOCPP accurately distinguished between
the two protocol versions during analysis.

To test compliance checking, we injected a non-
compliant BootNotification message with a 25-
character CS model name (exceeding the 20-character

Figure 8. CheckOCPP analyzing OCPP 2.0 traffic.

Figure 9. Mixed OCPP 2.0/2.0.1 traffic analysis using CheckOCPP.

limit). As shown in Figure 10, CheckOCPP flagged this
violation by highlighting the packet in red and displaying
an error message.

For OCPP 2.0.1, we tested certificate installation us-
ing an undefined certificate type. Figure 11 demonstrates
CheckOCPP’s ability to detect this non-compliance by
flagging the malformed packet in red and displaying the
error message.

Figure 12 showcases a dissected OCPP ReserveNow
message sent when a user authenticates to start charging
their EV. The figure highlights CheckOCPP’s ability to
examine and display all application-layer components of
the OCPP packet, including sensitive data such as the
idToken (highlighted in red). This token, often an RFID
identifier or credit card number, is used by the CSMS to
authorize charging sessions.

This last example highlights CheckOCPP’s dissection
capability that can facilitate detecting sensitive informa-
tion in OCPP communication. Malicious authors can use
the idToken to commit fraud by replicating it. The

Figure 10. CheckOCPP detecting non-compliant OCPP 2.0
BootNotification message.

Figure 11. CheckOCPP identifying non-compliant certificate in OCPP
2.0.1 traffic.

Figure 12. Isolating user authentication token using CheckOCPP.

Figure 13. CheckOCPPIPV4 traffic distinction tested against EmonEVSE
device.

OCPP alliance recommends using no encryption for se-
cure networks such as home deployment. However, related
work [20] has highlighted that many production charging
points do not implement TLS.

6. Discussion

Although OCPP does not mandate a specific IP ver-
sion, IPv6 adoption is growing in the EV charging ecosys-
tem due to its scalability and expanded address space [25].
For example, the IEC 61851-1 standard specifies IPv6-
based protocols and power line communication (PLC)
for advanced direct current (DC) charging features [25].
Similarly, the IETF documents IPv6 use cases for ve-
hicular networking in Intelligent Transportation Systems
(ITS) [13].

To address this trend, we added an IPv4/IPv6 dif-
ferentiation feature to CheckOCPP. When enabled, IPv4
traffic is flagged in yellow (see Figure 13); this feature
can be helpful for systems where IPV6 is required or rec-
ommended. Testing CheckOCPP on the OCPP 1.6 setup
described in Section 5.2, we observed that the EmonEVSE
device uses IPv4 for OCPP 1.6 communications, as shown
by the marked packets.

7. Related Work

OCTT [19], provided by the OCA, is a cloud-based
service designed to validate CS and CSMS against OCPP
specifications. It supports predefined test scenarios for
OCPP 1.6 and 2.0.1. However, OCTT requires direct
interaction with the device under test (e.g., CS or CSMS)
and is limited to predefined test sequences, making it un-
suitable for real-world deployments. While OCTT ensures
thorough protocol conformance testing, it is not designed
for network monitoring or passive analysis. Consequently,
it is primarily suited for pre-deployment quality assurance
(QA) testing.

In contrast, CheckOCPP operates as a dissector for
sniffed traffic between CS and CSMS, requiring no ac-
tive interference with the tested systems. It flags non-
compliant packets and enables passive audits. Another key
distinction is that CheckOCPP supports all OCPP versions
(at the time of writing) and is open-source, whereas OCTT
is closed-source and costs between $3,000 to $18,000 per
license for a single OCPP version [19]. While we do not
claim CheckOCPP can fully substitute OCTT’s complex
test cases—developed by the OCPP protocol maintainers,
we argue that CheckOCPP serves as a complementary so-
lution for post-deployment analysis and security research.

Mobility House [12] is a Python library that en-
ables developers to create advanced, customized charg-
ing systems. The library implements OCPP 1.6 (JSON),
2.0, and 2.0.1. Internal schema validation and typed re-
quest/response classes promote standards-compliant de-
velopment and simplify the creation of custom charging
applications. While the library performs internal checks
for message consistency, it implements the protocol rather
than a diagnostic or dissection tool for OCPP [12].

8. Conclusion

We present CheckOCPP, a new open-source OCPP
toolkit compatible with Wireshark, providing dissection
and compliance checking for OCPP and enabling passive
real-time analysis of OCPP communications. CheckOCPP
automates protocol version detection (OCPP 1.6, 2.0, and
2.0.1), validates message structures against schemas, and
flags non-compliant packets. Built using Lua and Mobility
House, CheckOCPP allows better OCPP traffic analysis,
compliance validation, and security analysis. By open-
sourcing CheckOCPP, we provide the community with a
valuable tool for auditing OCPP deployments, comple-
menting existing compliance frameworks, and enhancing
security analysis.

Our evaluation against Mobility House and IP-Mininet
(OCPP 2.0/2.0.1) and the production-grade EmonEVSE
(OCPP 1.6) demonstrates CheckOCPP’s ability to dis-
sect traffic, detect malformed packets, and uncover com-
pliance gaps in real-world implementations. For ex-
ample, CheckOCPP identified that EmonEVSE accepts
GetConfiguration requests with key names exceed-
ing the 50-character limit, a deviation from the OCPP
1.6 specification that could be exploited to conduct an
overflow attack.

Acknoledgments

Work funded by the European Union under grant
agreement no. 101070008 (ORSHIN project). Views and
opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting au-
thority can be held responsible for them. Moreover, it has
been partially supported by the French National Research
Agency under the France 2030 label (NF-HiSec ANR-
22-PEFT-0009) and the Apricot/ENCOPIA ANR MESRI-
BMBF project (ANR-20-CYAL-0001).

References

[1] What is OCPP?, 2024. ChargeLab.

[2] Ampeco. A Complete Guide to OCPP (Open Charge Point Pro-
tocol). https://www.ampeco.com/guides/complete-ocpp-guide/,
2025. Accessed: January 24, 2025.

[3] OpenEVSE authors. EmonEVSE WiFi Connected EV Charging
Station (Type-2), 2024. OpenEnergyMonitor.

[4] OpenEVSE authors. OpenEVSE WiFi Kit, 2024. OpenEVSE.

[5] Alessandro Brighente, Mauro Conti, Denis Donadel, Radha
Poovendran, Federico Turrin, and Jianying Zhou. Electric Vehicles
Security and Privacy: Challenges, Solutions, and Future Needs.
arXiv preprint arXiv:2301.04587, 2023.

[6] cjson developer. lua-cjson, 2023. LuaRocks.

[7] Wevo Energy. Open Charge Point Protocol (OCPP) Security
Explained. https://wevo.energy/white-papers/open-charge-poi
nt-protocol-ocpp-security-explained/, 2025. Accessed: January
24, 2025.

[8] Ian Fette and Alexey Melnikov. The WebSocket Protocol. RFC
6455, 2011.

[9] Wireshark Foundation. Wireshark Developer’s Guide - Part II.
Wireshark Development - Chapter 9. Packet Dissection, 2023.
Wireshark.

[10] Wireshark Foundation. Wireshark Expert Information, 2025. Ac-
cessed: 2025-01-31.

[11] Zacharenia Garofalaki, Dimitrios Kosmanos, Sotiris Moschoyian-
nis, Dimitrios Kallergis, and Christos Douligeris. Electric vehicle
charging: A survey on the security issues and challenges of the
open charge point protocol (OCPP). IEEE Communications Sur-
veys & Tutorials, 24(3):1504–1533, 2022.

[12] Mobility House. Python OCPP: The Mobility House Implementa-
tion. https://github.com/mobilityhouse/ocpp, 2025. Accessed: Jan.
2025.

[13] Internet Engineering Task Force (IETF). Problem Statement and
Use Cases of IPv6-based Vehicular Networking in Intelligent
Transportation Systems. https://datatracker.ietf.org/doc/html/rf
c9365, 2025. Accessed: January 25, 2025.

[14] jsonschema developer. jsonschema, 2023. LuaRocks.

[15] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in
a Laptop: Rapid Prototyping for Software-Defined Networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics
in Networks, pages 1–6. ACM, 2010.

[16] Lua.org. Lua: Powerful, Fast, Lightweight, Embeddable Scripting
Language. https://www.lua.org/, 2025. Accessed: January 24,
2025.

[17] Roberto Metere, Zoya Pourmirza, Sara Walker, and Myriam
Neaimeh. An Overview of Cyber Security and Privacy on
the Electric Vehicle Charging Infrastructure. arXiv preprint
arXiv:2209.07842, 2022.

[18] OCA. Open charge point protocol, 2024. OCPP.

[19] Open Charge Alliance. OCPP Test Tools. https://openchargeallian
ce.org/test-tool/, 2025. Accessed: Jan. 2025.

[20] Khaled Sarieddine, Mohammad Ali Sayed, Sadegh Torabi, Ribal
Atallah, Danial Jafarigiv, Chadi Assi, and Mourad Debbabi. Un-
covering Covert Attacks on EV Charging Infrastructure: How
OCPP Backend Vulnerabilities Could Compromise Your System.
Preprint, 2024.

[21] Saiflow Research Team. Hijacking Charger’s Identifier to Cause
DoS, 2023.

[22] Olivier Tilmans et al. IPMininet: A Mininet Extension for Emu-
lating Complex IP Networks. https://github.com/cnp3/ipmininet.
Accessed: January 25, 2025.

[23] Wireshark. Modbus Dissector, 2023.

[24] Wireshark. MQTT Dissector, 2023.

[25] Wolfspeed. What’s Under the Hood: EV Chargers - A Tale of
Standards and Many Connectors. https://www.wolfspeed.com/kn
owledge-center/article/whats-under-the-hood-ev-chargers-a-tale-o
f-standards-and-many-connectors/, 2025. Accessed: January 25,
2025.

Appendix

TABLE 1. CHECKOCPP OCPP MESSAGE COMPATIBILITY

Message Version

Heartbeat 1.6, 2.0, 2.0.1
BootNotification 1.6, 2.0, 2.0.1
Authorize 1.6, 2.0, 2.0.1
StatusNotification 1.6, 2.0, 2.0.1
TransactionEvent 2.0, 2.0.1
Reset 1.6, 2.0, 2.0.1
MeterValues 1.6, 2.0, 2.0.1
CancelReservation 1.6, 2.0, 2.0.1
ReserveNow 1.6, 2.0, 2.0.1
ClearCache 1.6, 2.0, 2.0.1
ChangeAvailability 1.6, 2.0, 2.0.1
ClearChargingProfile 1.6, 2.0, 2.0.1
DataTransfer 1.6, 2.0, 2.0.1
SendLocalList 1.6, 2.0, 2.0.1
SetChargingProfile 1.6, 2.0, 2.0.1
TriggerMessage 1.6, 2.0, 2.0.1
UnlockConnector 1.6, 2.0, 2.0.1
UpdateFirmware 1.6, 2.0, 2.0.1
SignCertificate 1.6, 2.0, 2.0.1
InstallCertificate 1.6, 2.0, 2.0.1
CertificateSigned 1.6, 2.0, 2.0.1
DeleteCertificate 1.6, 2.0, 2.0.1
GetLog 1.6, 2.0, 2.0.1
LogStatusNotification 1.6, 2.0, 2.0.1
SecurityEventNotification 1.6, 2.0, 2.0.1
GetInstalledCertificateIds 1.6, 2.0, 2.0.1
ChangeConfiguration 1.6
GetConfiguration 1.6
GetDiagnostics 1.6
RemoteStartTransaction 1.6
RemoteStopTransaction 1.6
StartTransaction 1.6
StopTransaction 1.6
DiagnosticsStatusNotification 1.6
ExtendedTriggerMessage 1.6
SignedFirmwareStatusNotification 1.6
SignedUpdateFirmware 1.6
TransactionEvent 2.0, 2.0.1
RequestStartTransaction 2.0, 2.0.1
RequestStopTransaction 2.0, 2.0.1
NotifyChargingLimit 2.0, 2.0.1
NotifyEVChargingSchedule 2.0, 2.0.1
NotifyEVChargingNeeds 2.0, 2.0.1
NotifyDisplayMessages 2.0, 2.0.1
NotifyCustomerInformation 2.0, 2.0.1
NotifyMonitoringReport 2.0, 2.0.1
NotifyReport 2.0, 2.0.1
SetVariables 2.0, 2.0.1
GetVariables 2.0, 2.0.1
SetNetworkProfile 2.0, 2.0.1
GetReport 2.0, 2.0.1
GetBaseReport 2.0, 2.0.1
GetMonitoringReport 2.0, 2.0.1
GetChargingProfiles 2.0, 2.0.1
ReportChargingProfiles 2.0, 2.0.1
PublishFirmware 2.0, 2.0.1
UnpublishFirmware 2.0, 2.0.1
CostUpdated 2.0, 2.0.1
GetCertificateStatus 2.0, 2.0.1
Get15118EVCertificate 2.0, 2.0.1
ClearDisplayMessage 2.0, 2.0.1
GetDisplayMessages 2.0, 2.0.1
SetMonitoringBase 2.0, 2.0.1

https://www.ampeco.com/guides/complete-ocpp-guide/
https://wevo.energy/white-papers/open-charge-point-protocol-ocpp-security-explained/
https://wevo.energy/white-papers/open-charge-point-protocol-ocpp-security-explained/
https://github.com/mobilityhouse/ocpp
https://datatracker.ietf.org/doc/html/rfc9365
https://datatracker.ietf.org/doc/html/rfc9365
https://www.lua.org/
https://openchargealliance.org/test-tool/
https://openchargealliance.org/test-tool/
https://github.com/cnp3/ipmininet
https://www.wolfspeed.com/knowledge-center/article/whats-under-the-hood-ev-chargers-a-tale-of-standards-and-many-connectors/
https://www.wolfspeed.com/knowledge-center/article/whats-under-the-hood-ev-chargers-a-tale-of-standards-and-many-connectors/
https://www.wolfspeed.com/knowledge-center/article/whats-under-the-hood-ev-chargers-a-tale-of-standards-and-many-connectors/

PublishFirmwareStatusNotification 2.0, 2.0.1
SetDisplayMessage 2.0, 2.0.1
SetMonitoringLevel 2.0, 2.0.1
SetVariableMonitoring 2.0, 2.0.1
ClearVariableMonitoring 2.0, 2.0.1
ClearedChargingLimit 2.0, 2.0.1
CustomerInformation 2.0, 2.0.1
NotifyEvent 2.0, 2.0.1
GetTransactionStatus 2.0, 2.0.1

	Introduction
	Background
	OCPP
	Wireshark
	OpenEVSE
	IPmininet

	Design
	Motivation
	CheckOCPP

	Implementation
	Parsing
	Compliance check

	Evaluation
	Setup
	Results

	Discussion
	Related Work
	Conclusion
	References

