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ABSTRACT
Xiaomi is the market leader in the electric scooter (e-scooter) seg-
ment, with millions of active users. It provides several e-scooter
models and Mi Home, a mobile application for Android and iOS
to manage and control an e-scooter. Mi Home and the e-scooter
interact via Bluetooth Low Energy (BLE). No prior research eval-
uated the security of this communication channel, as it employs
security protocols proprietary to Xiaomi. Exploiting these protocols
results in severe security, privacy, and safety issues, e.g., an attacker
could steal an e-scooter or prevent the owner from controlling it. In
this work, we fill this research gap by performing the first security
evaluation on all proprietary wireless protocols deployed to Xiaomi
e-scooters from 2016 to 2021. We identify and reverse-engineer
four of them, each having ad-hoc Pairing and Session phases. We
develop four attacks exploiting these protocols at the architectural
level, and we call them Malicious Pairing (MP) and Session Down-
grade (SD). Both attacks can be performed from proximity, if the
attacker’s machine is within BLE range of the target e-scooter, or
remotely, via a malicious application co-located with Mi Home. An
adversary can utilize MP and SD to steal a password-protected and
software-locked e-scooter, or to prevent a victim from accessing it
via Mi Home. We isolate six attack root causes, including the lack of
authentication while pairing, and the improper enforcement of the
e-scooter password. We open-source the E-Spoofer toolkit. Our
toolkit automates the MP and SD attacks, and includes a reverse-
engineering module for future research. We empirically confirm
the effectiveness of our attacks by exploiting three e-scooters (i.e.,
M365, Essential, and Mi 3), embedding five BLE subsystem boards
and eight BLE firmware versions that support all four Xiaomi pro-
tocols. We design and evaluate two practical countermeasures that
address our impactful attacks and their root causes, and we release
them as part of E-Spoofer. We responsibly disclosed our findings
to Xiaomi.
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1 INTRODUCTION
Xiaomi is leading the electric scooter (e-scooter) market [20]. Its ecosystem
includes seven e-scooters released in the last seven years (i.e., M365, Pro
1, Pro 2, 1S, Essential, Mi 3, and Mi 4) and the Mi Home mobile application
for Android [3] and iOS [4]. Mi Home enables a user to manage his e-
scooter, e.g., wirelessly locking and unlocking it or setting a password.
Mi Home and the e-scooter communicate via proprietary application-layer
protocols developed by Xiaomi. These protocols are undocumented, not
peer-reviewed, and built on top of a Bluetooth Low Energy (BLE) link-layer.

Despite their associated security, privacy, and safety risks, no research
work evaluated the security protocols used by Xiaomi to secure the interac-
tion between its e-scooters and Mi Home. Instead, recent work focused on
the privacy implications of e-scooter rental apps (including Xiaomi) [46]
and on the security of Xiaomi’s fitness tracking ecosystem [10]. In our work,
we find that Xiaomi protocols can be exploited to (remotely) unlock and
steal an e-scooter or permanently prevent its owner to manage it from Mi
Home.

This work presents the first security evaluation of the communication
channel between Xiaomi’s e-scooters and Mi Home. In particular, we un-
cover and reverse-engineer all four e-scooter protocols used from 2016 to
2021. We label them as P1, P2, P3, and P4, and we dissect their custom
Pairing (i.e., key agreement) and Session phases. We find that P1, P2, and P3
offer no security guarantees but security through obscurity. Instead, P4 pro-
vides some security properties (e.g., ECDH key agreement and AES-CCM
authenticated encryption) but is vulnerable to downgrade attacks. Moreover,
we find that Xiaomi decided not to use standard BLE link-layer security
mechanisms (e.g., BLE pairing), despite their devices support them.

We present four novel attacks targeting the Xiaomi protocols’ specifi-
cations. Two attacks enable a proximity-based or remote attacker to pair
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maliciously with an e-scooter and get authorized access to it without spoof-
ing the victim’s identity (i.e., MP). The other two attacks allow a proximity-
based or remote attacker to downgrade the connection with an e-scooter to
an insecure version and send arbitrary commands (i.e., SD). The proximity-
based adversary must be in BLE range of the target e-scooter. Instead, the
remote adversary must have installed a malicious app on the victim’s smart-
phone. Our attacks achieve impactful goals, such as unlocking and stealing
an e-scooter, or preventing a victim from regaining control of the e-scooter
via Mi Home. We isolate the six attacks’ root causes, including the improper
authentication and authorization mechanisms, and the unprotected but
privileged vendor-specific features of Xiaomi protocols.

We release E-Spoofer, a toolkit capable of performing our four attacks by
reimplementing and abusing the four reversed Xiaomi protocols. The toolkit
includes three extensible modules. Two dedicated modules implement the
Malicious Pairing and Session Downgrade attacks. The reverse-engineering
(RE) module offers protocol dissectors to decode and build custom Xiaomi
packets (e.g., P1, P2, P3, and P4). and useful Frida hooks for Mi Home to
dynamically intercept and modify the proprietary Xiaomi payloads.

We successfully evaluate the attacks in eight different attack scenarios
covering P1, P2, P3, and P4. Our setup allows testing multiple e-scooter
configurations by using three modded e-scooters (e.g., M365, Essential, and
Mi 3) with five BLE subsystems and eight BLE firmware. Our results are
alarming. In all attack scenarios, we managed to unlock an e-scooter and
steal it, or to lock it and to change its password, preventing its legitimate
owner from accessing it via Mi Home. These results lead to millions [17] of
exploitable devices.

To fix the four attacks and their six root causes, we developed and tested
two usable and low-cost countermeasures and include them in our toolkit.
First, we propose a backward-compatible pairing protocol with proper
authentication and authorization mechanisms. Second, we provide a script
to patch the session downgrade command from an e-scooter BLE firmware.
We successfully test our patch on the M65 and Pro 1 e-scooters, whose BLE
firmware is no longer updated by Xiaomi.

We summarize our contributions as follows:

• We present the first security evaluation of the proprietary security
mechanisms employed by Xiaomi’s e-scooters and Mi Home applica-
tion. We isolate four custom application-layer security protocols on
top of an insecure BLE link-layer. After reversing their Pairing and
Session phases, we uncover six severe vulnerabilities in their design,
including vendor-specific and unauthenticated protocol commands.

• We develop four attacks that steal an e-scooter or prevent its owner
from accessing it from the Mi Home app previously paired with
that e-scooter. The attacks are effective on P1, P2, P3, and P4, and
can be deployed by an attacker in BLE range of a target e-scooter
(i.e., proximity-based attacker) or via a malicious application on the
victim’s smartphone (i.e., remote attacker).

• We open-source E-Spoofer, an automated and low-cost toolkit that
implements our attacks and tampers with the four Xiaomi protocols.
Our toolkit includes the MP and SD attack modules, and a reverse-
engineering module with protocol dissectors, firmware analysis
tools, and Mi Home Frida hooks.

• We confirm that our four attacks are effective in eight attack scenar-
ios covering five e-scooter BLE subsystems and eight BLE firmware.
Our evaluation samples include P1, P2, P3, and P4. Our experimental
setup allows to reproduce multiple attack scenarios using three par-
tially disassembled e-scooters and different BLE subsystems. We also
release two effective countermeasures that fix our attacks. The first
addresses the MP attacks by implementing a more secure pairing
protocol. The second prevents the SD attacks by patching the BLE
firmware of an e-scooter.

Xiaomi Protocols
Over BLE

Xiaomi E-scooter User Phone

Web Requests
Over Wi-Fi

Xiaomi Backend

Figure 1: Xiaomi e-scooter ecosystem. Xiaomi e-scooter (left),
the user smartphone running the Mi Home app (middle),
and the Xiaomi backend (right). The e-scooter and the app
are paired and connected over BLE. The app associates the
e-scooter with the Xiaomi backend over Wi-Fi. We focus on
the BLE traffic between the app and the e-scooter.

Responsible disclosure and ethics. We responsibly disclosed our findings
multiple times with Xiaomi via their bug bounty program [50]. In October
2022, we reported a UI password bypass issue with Mi Home, Xiaomi ac-
knowledged it and provided a bug bounty. In November 2022, we shared a
technical report and the code to reproduce our findings. In December 2022,
we provided them with a video of the attacks on actual devices. Xiaomi did
not follow up. We conducted our experiments in a controlled environment
without involving third-party users and services. We anonymously provide
our E-Spoofer toolkit at https://anonymous.4open.science/r/Espoofer-7B21
via a private repository that should stay confidential within the TPC. We
will submit our toolkit for artifact evaluation. After responsible disclosure,
we will open-source the toolkit.

2 XIAOMI E-SCOOTER ECOSYSTEM
Xiaomi is the electric scooter (e-scooter) market leader, sporting the highest
number of active users and shipped devices [20]. Currently, it features seven
e-scooters, i.e., M365 (2016), Pro 1 (2019), Pro 2 (2020), 1S (2020), Essential
(2020), Mi 3 (2021), and Mi 4 (2022). Xiaomi also maintains Mi Home, a
smartphone application for Android [3] and iOS [4] that manages Xiaomi’s
smart home devices, including any e-scooter. Xiaom’s cloud-based backend
service manages the e-scooters and their active Mi Home users.

Figure 1 shows a high-level representation of the Xiaomi e-scooter ecosys-
tem. This work focuses on the BLE communication channel between the
e-scooter and Mi Home. The e-scooter acts as a BLE peripheral (connection
responder), while Mi Home is the BLE central (connection initiator). The e-
scooter periodically broadcasts BLE advertisement packets to be discovered.
These packets contain the e-scooter name, model, security level, and pairing
mode activation. Mi Home scans the BLE spectrum and lists all connectable
Xiaomi e-scooters nearby. Once connected, the devices exchange data using
BLE’s Generic Attribute Profile (GATT). The e-scooter exposes a GATT
server, which includes the Nordic UART Service and a custom Xiaomi ser-
vice. On the other hand, Mi Home acts as a GATT client, sending read, write,
and subscribe requests to the e-scooter’s GATT server. To communicate, Mi
Home and the e-scooter establish a BLE link-layer connection. Then, they
use proprietary application-layer protocols and mechanisms that cannot be
scrutinized with multi-purpose static and dynamic analysis tools.

Mi Home requires the user to register a Xiaomi account to pair, con-
nect, and manage one or more Xiaomi e-scooters. The pairing process is
a one-time procedure that requires user interaction and an Internet con-
nection. The user starts pairing via the app UI, scans for nearby Xiaomi
e-scooters, selects the correct e-scooter from a list, presses the headlight
button to activate pairing mode, and waits. Once the pairing is complete,
Xiaomi backend links the user account to the paired e-scooter, and Mi Home
remembers the device for future connections. Optionally, the user can set a
6-digit alphanumeric PIN to protect the e-scooter from unauthorized access

https://anonymous.4open.science/r/Espoofer-7B21
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Figure 2: Proximity-based (left) and remote (right) attacker
models investigated in this work. In the proximity-based
threat model, the attacker is within BLE range of a target
e-scooter. In the remote threat model, the adversary first
installs a malicious Android app on the victim’s smartphone.
Then, she uses the malicious app (in red) to remotely target
an e-scooter within BLE range of the victim’s smartphone.

to Mi Home (e.g., from attackers that have stolen the user’s smartphone
and want to unlock the e-scooter via Mi Home).

A Xiaomi e-scooter is a high-end embedded device composed of several
proprietary and undocumented subsystems: radio (BLE), battery management
(BMS), and electric motor (DRV). Each subsystem has a dedicated system-
on-chip (SoC) and firmware. The connection between the subsystems is
not standardized and might involve a proprietary bus. The radio subsystem
provides BLE connectivity, enabling communication between the e-scooter
and Mi Home. It also acts as a gateway to distribute firmware updates to
the DRV and BMS. The BMS monitors and manages the e-scooter’s battery.
The DRV takes care of the electric motor that, when the DRV is not up-to-
date, can be patched to change the motor’s maximum speed. At the time
of writing, all Xiaomi e-scooters are manufactured by Ninebot, a Chinese
company financed by Xiaomi that acquired Segway (its main competitor in
the US) in 2015 [30].

3 THREAT MODEL
Now we present our system model and our proximity-based and remote
attacker models. Please refer to Section 2 for their related background
material.

3.1 System Model
We consider a victim who owns a Xiaomi e-scooter and a smartphone
equipped with the Mi Home app for Android or iOS, as shown in Figure 1.
We assume that the Mi Home version number is the latest available at the
time of submission (e.g., Android v7.11.704 and iOS v7.12.204). We do not
set a target Android or iOS version as we want to explore Xiaomi-compliant
attacks that work regardless of the smartphone OS version.

The victim securely paired the app, and the e-scooter accepted the re-
quired permissions and completed the default firmware update. The update
process involves the BLE, battery management, and electric motor subsys-
tems (e.g., DRV017, BLE157, BMS141), and the BLE component acts as a
gateway. To consider the most secure scenario, we assume that the password-
protection is enabled to prevent unauthorized access to the e-scooter. Hence,
according to common sense, the victim locks and unlocks the e-scooter from
the app. Moreover, the victim uses the e-scooter features, such as pressing
the power button to activate or deactivate the headlight.

The e-scooter and Mi Home communicate using Xiaomi proprietary
application-layer protocols. These protocols run on top of a link-layer con-
nection established using BLE. Only Xiaomi knows the application-layer
protocols’ details and their security guarantees (e.g., confidentiality, in-
tegrity, and authenticity).

3.2 Attacker Models
Password protection and secure communication at the application-layer
and link-layer should protect victims against impactful attacks, including
threats effective from BLE proximity or remotely via a malicious app on the
victim’s smartphone. For example, it should not be possible to (remotely)
unlock and steal an e-scooter or (remotely) reset a password to deny the
victim access to the e-scooter. Based on this reasoning, and as shown in
Figure 2, we focus on two relevant threat actors:

Proximity-based attacker. The proximity-based attacker targets the e-
scooter with BLE signals. Hence, she requires being within BLE range of
the target device. The proximity attacker has the following goals: (i) unlock
and steal a (password-protected) e-scooter, and (ii) prevent the legitimate
owner from accessing and controlling the e-scooter via Mi Home.

The proximity adversary has the capabilities of a real-world and low-cost
BLE attacker. She can craft custom BLE packets, sniff the traffic over-the-air
to get public information (e.g., BLE addresses and advertisements), and
replicate the Android and iOS Mi Home apps with her attack equipment.
The attacker does not observe the e-scooter while it pairs with Mi Home
and does not install malicious software on the victim’s devices. Moreover,
she does not physically tamper with the e-scooter and the smartphone (e.g.,
no physical fault injection and side-channel attack).

Remote attacker. The remote adversary attacks the e-scooter using a ma-
licious application installed on the victim’s smartphone. Thus, she requires
the victim’s smartphone to be within BLE range of the e-scooter, but she
can remotely activate the app. For example, the adversary can attack the
e-scooter while the victim is parking the e-scooter and walking away from
the parking lot. This model differs from a proximity-based attack as the
latter involves a BLE attacking machine (e.g., a laptop) in the BLE range
of the victim, while the former involves a malicious smartphone app. The
remote attacker has the same goals as the proximity-based attacker.

Capability-wise, we consider a low-cost and real-world remote threat
actor targeting the Android ecosystem (as opposed to iOS, which is more
closed). We assume a malicious Android app that was installed using known
(yet practical) social engineering and phishing techniques. The app does
not require root privileges but needs basic permissions to interact with the
e-scooter, such as Bluetooth and Internet permissions. The attacker develops
the app using standard Android tools (e.g., Android Studio) and APIs (e.g.,
BLE advertisement, scanning, and GATT APIs). The remote attacker has
the same limitations as the proximity one, except for installing an app on
the victim’s smartphone.

Physical access requirements. Regardless of the attacker model, we as-
sume that the adversary needs minimal (but mandatory) physical access
to steal and carry away an e-scooter. For example, in a proximity-based
scenario, the attacker can approach the e-scooter when the victim is not
present and perform some short interactions with its dashboard (e.g., press-
ing the headlight and the power buttons). Alternatively, in a remote threat
scenario, two adversaries can collude. For example, an adversary unlocks
the e-scooter by launching a remote attack via the malicious app. At the
same time, the other adversary can press any button (if necessary) and steal
the e-scooter.

4 REVERSED XIAOMI SECURITY PROTOCOLS
Wedescribe the four proprietary Xiaomi protocols that we reverse-engineered
(RE). Please see the Appendix for an explanation of our RE methodology. We
discover that Mi Home and the e-scooter establish an insecure link-layer BLE
connection, despite both devices supporting BLE security mechanisms (e.g.,
BLE Pairing). Instead, Xiaomi uses proprietary application-layer protocols to
secure their whole e-scooter ecosystem.

Table 1 summarizes the details we reversed from the protocols. We label
the protocols as P1, P2, P3, and P4, and also assign a descriptive name to
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each one. P1 is named "No security" because it does not utilize any secu-
rity mechanism. P2 is named "XOR obfuscation" because it employs an
obfuscation strategy exclusively based on XOR. P3 is named "AES-ECB and
XOR obfuscation" because it XORs Xiaomi packets with the output of an
AES-ECB cipher. P4 is named "ECDH and AES-CCM" because it employs
ECDH for Pairing and AES-CCM during Session. Then, we isolate the pro-
tocols’ phases: Pairing (e.g., key agreement), and Session (e.g., authenticated
encryption). For instance, P2 Pairing is based on a public XOR mask and is
unauthenticated. Its Session reuses the XOR mask to obfuscate payloads, is
not authenticated, and provides no integrity protection. Our experiments re-
veal that all Xiaomi e-scooters (more specifically, their BLE subsystems) and
all Mi Home versions (from 2016 to 2021) have employed these protocols.
Now we describe each protocol in detail.

4.1 No Security (P1)
P1 provides no security guarantees as it lacks Pairing and Session capa-
bilities. The devices establish a BLE connection and then exchange the
application-layer payloads in cleartext without integrity protection. The
only roadblock for the attacker to eavesdrop and inject packets into the
connection is the knowledge of the application-layer packet format. P1 is
the prototypical example of security through obscurity (STO).

4.2 XOR Obfuscation (P2)
P2 offers no security guarantees, but relies on a XOR-based obfuscation
strategy. During Pairing, Mi Home reads a twelve-byte XOR mask from
the e-scooter Hardcopy Data Channel GATT characteristic, different at
every reboot of the device. Then, during Session, the devices obfuscate
the application-layer payloads by XORing them with the XOR mask. If
the payload is longer than the XOR mask, the app asks the e-scooter for
the extended version of the same XOR mask and uses that one instead in
the XOR operation. Since the attacker can trivially recover the mask (e.g.,
eavesdropping or reading it from the e-scooter), P2 is insecure and falls into
the STO category.

4.3 AES-ECB and XOR Obfuscation (P3)
P3 uses a weak key establishment protocol based on AES-ECB and XOR
obfuscation. Pairing generates a sixteen-byte pairing key (pk) by computing
pk=AES-ECB(key=constant,input=escooter_name), where constant is
hardcoded both in the Mi Home app and in the e-scooter BLE firmware, and
escooter_name is publicly advertised by the device. Then, during Session,
the devices obfuscate the application-layer payloads by XORing them with
pk. If the payload is longer than the pairing key, the payload is XORed
with an extended pairing key, which is just pk repeated as many times as
necessary. P3 provides no security guarantees but only STO. An attacker
can compute pk by extracting constant from the reversed code of any Mi
Home APK and trivially acquire escooter_name. Once pk is known, the
attacker can de-obfuscate and inject valid P3 packets.

4.4 ECDH and AES-CCM (P4)
During Pairing, P4 employs Elliptic Curve Diffie-Hellman (ECDH) for key
agreement and unilateral pairing key authentication. In particular, the e-
scooter sends chal, a sixteen-byte random challenge. The devices exchange
their public keys, using the SECP256R1 curve, and derive ss, an ECDH
shared secret. Then, they compute a pairing key (pk) and a one-time key
(otk) using HKDF as follows: pk||otk=HKDF(key=ss,input="mible-set
up-info",salt=""). The app responds to the e-scooter challenge with re
sp=AES-CCM(key=otk,input=chal).

During Session, P4 uses HKDF, to derive the directional session keys,
and HMAC-based mutual authentication. The devices exchange rand_esc
and rand_app, two sixteen-byte random numbers. The devices derive two
directional session keys (sk_esc and sk_app) and AES-CCM nonces (n_esc

and n_app) as follows: sk_esc||sk_app||n_esc||n_app=HKDF(key=pk,i
nput="mible-login-info",salt=rand_app||rand_esc).

Then, the e-scooter sends resp_esc=HMAC(key=sk_esc,input=rand_
esc||rand_app) to authenticate its session key. Similarly, the app authen-
ticates its directional key by sending resp_app=HMAC(key=sk_app,inp
ut=rand_esc||rand_app). After mutual authentication of both session
keys, each device employs AES-CCM to encrypt and integrity protect the
application-layer payloads. AES-CCM is keyed with the directional session
key and initialized with the directional nonce concatenated with a packet
counter.

P4 provides security guarantees (unlike P1, P2, and P3) but can be down-
graded. Replay attacks are ineffective against P4 Pairing and Session because
the former utilizes a random challenge during pairing key authentication,
and the latter utilizes random values and nonces during the HMAC-based
authentication. Moreover, the mutual authentication during P4 Session pre-
vents impersonation attacks on Mi Home or the e-scooter. The usage of
session keys limits the impact of a compromised key to the current session
only, and the usage of a packet counter in the encryption of regular BLE
communication protects against nonce reuse attacks.

P4 protocol comes in two versions (i.e., P4v1 and P4v2), depending on
the supported version of the Session phase.

5 ATTACKS
We present four novel attacks targeting the four Xiaomi custom protocols
discussed in Section 4 that enable stealing a (password-protected) e-scooter
or denying a victim from using it via Mi Home. Our attacker can either be
proximity-based or remote, as stated in Section 3. The attacks achieve their
goals by using one of two spoofing strategies: (i) the attacker pairs with
the target e-scooter while impersonating any user, i.e., Malicious Pairing
(MP) (ii) the adversary connects to the target e-scooter and downgrades the
session to an insecure version, i.e., Session Downgrade (SD).

The attacks are critical to the Xiaomi ecosystem as they exploit the
four Xiaomi application-layer security protocols at the architectural level.
Hence, they are effective regardless of the e-scooter’s hardware and software
details, including its model, and only depend on the BLE firmware being
run. Moreover, they defeat the most secure setup, i.e., a password-protected
and software-locked e-scooter already paired with a registered Xiaomi user.
We even completed the attacks while the e-scooter was in motion (in a
controlled environment). We now describe the MP and SD strategies, and
we isolate their root causes.

5.1 Malicious Pairing (MP)
Figure 3 shows the MP attack strategy that can be used to lock an e-scooter
away from its user, or to steal it. The attacker waits until the victim presses
the e-scooter headlight button to switch on or off the front light (or presses
the button if the e-scooter is unattended). As a side effect, the button press
activates pairing mode for the e-scooter for seventeen seconds without noti-
fying the user. The adversary detects that the e-scooter is pairable from its
BLE advertisement packets and detects which Xiaomi protocol it supports
(i.e., P1, P2, P3, or P4). Then, she establishes a BLE link-layer connection
without spoofing the victim’s smartphone BLE address. Hence, the adver-
sary can target an e-scooter without knowing any information about its
owner (e.g., any e-scooter in a parking lot).

Finally, the attacker sends a Xiaomi-compliant pairing request and com-
pletes Pairing, regardless of the supported Xiaomi protocol of the e-scooter.
Once paired, she can perform any action requiring authentication. For exam-
ple, she can lock it and set a new e-scooter password to prevent the victim
from accessing it from Mi Home. The takeover is effective, as we discovered
that Mi Home does not allow resetting the e-scooter password, even with a
factory reset. Alternatively, the attacker can use the MP strategy to unlock
and steal the e-scooter.
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Table 1: The four Xiaomi application-layer security protocols analyzed in this work. The first and second columns show the
protocol ID and name. Each protocol has a Pairing and Session phase. P4 has two Session versions, where v2 is equal to v1 but
adds downgrade protection. Unil means unilateral.

ID Name Pairing Session

P1 No security None None
P2 XOR obfuscation Public XOR mask, no auth XOR mask obfuscation, no auth, no integrity
P3 AES-ECB and XOR obfuscation Weak AES-ECB key agreement, no auth XOR obfuscation, implicit auth, no integrity

P4 ECDH and AES-CCM ECDH, AES-CCM unil auth
v1: HKDF, HMAC, AES-CCM, mutual auth
v2: v1 with downgrade protection

The MP attack strategy is effective for a proximity-based attacker inside
the BLE range of the e-scooter, and for a remote attacker controlling a
malicious app while the victim’s smartphone is within BLE range of the
e-scooter. Moreover, the strategy works regardless of the Pairing phase
version and the e-scooter password because, while pairing, the attacker
does not have to authenticate its identity and provide the password.

5.2 Session Downgrade (SD)
Figure 4 shows the SD attack strategy that allows an adversary to lock
an e-scooter away from its user, or to steal it. The attacker detects the
Session protocol supported by the e-scooter. Then, she looks at the BLE
advertisement packets of the e-scooter, and she detects if the target runs
P4v1 or P2, being the two Session protocols that expose a session downgrade
command. She establishes a BLE link-layer connection without spoofing
anything from the victim. Hence, the adversary can target an e-scooter

Attacker E-scooter

Light button press

Pairable for 17 sec

BLE: Advertisement

Detect Pairing phase

BLE: Connection request

BLE: Connection completed

Xiaomi: Pairing request

Xiaomi: Pairing completed

Attacker paired and authorized (P1, P2, P3, P4)

Figure 3: Malicious Pairing (MP) attack strategy. The user
presses the headlight button. The e-scooter goes into pairable
mode for seventeen seconds and advertises it via BLE. The
attacker detects the Pairing phase supported by the e-scooter.
Then, she establishes a BLE connection without imperson-
ating the victim’s smartphone and completes Xiaomi Pair-
ing. As a final result, she is authorized to send any Xiaomi-
compliant command to the e-scooter, including lock, unlock,
and set or change a password.

Attacker E-scooter

BLE: Advertisement

Detect Session phase

BLE: Connection request

BLE: Connection completed

Xiaomi: Session downgrade

Downgraded Session (P4v1 to P3, P2 to P1)

Figure 4: Session Downgrade (SD) attack strategy. The app
detects a nearby e-scooter vulnerable to SD (i.e., running P4v1
or P2). The attacker skips Pairing and sends the session down-
grade command to the e-scooter. The Session is downgraded
from P4v1 to P3, or from P2 to P1.

running P4v1 or P2 without knowing any information about its owner.
Then, the attacker sends a Xiaomi-compliant session downgrade command,
downgrading the Session from P4v1 to P3 or from P2 to P1. The attacker
exploits the insecure P3 and P1 to perform dangerous actions on the e-
scooter. Similarly to MP, she can lock the e-scooter and prevent access to
it from Mi Home by setting a new e-scooter password. She can also use
the SD strategy to unlock and steal the e-scooter. The SD strategy can be
applied to our proximity-based and remote threat models. The strategy
entirely skips Pairing and starts an insecure downgraded Session, removing
any authentication requirement from the attacker. Moreover, the strategy
is particularly effective on e-scooters running P4v1, as they offer security
guarantees that are nullified by downgrading the Session phase to the
insecure P3.

5.3 Root Causes
The four attacks presented above are enabled by the following six root causes
(i.e., vulnerabilities) that we isolated in the Xiaomi protocols’ specification:

V1: Unauthenticated Pairing. None of the Pairing phases require device
authentication (e.g., via a certificate signed by Xiaomi). Hence, an attacker
can pair with an e-scooter while spoofing an arbitrary Mi Home app without
authenticating, regardless of the application-layer protocol used by the e-
scooter (i.e., P1, P2, P3, or P4).

V2: Unintentional Pairing mode. Pressing the e-scooter’s headlight button
activates pairing mode for seventeen seconds without notifying the user.
Hence, whenever the victim presses the headlight button, an attacker in
the BLE range of the e-scooter can detect that the e-scooter is pairable
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from its BLE advertisements and pair. Alternatively, given physical access,
the attacker can trigger pairing mode while the victim is away, by simply
pressing the headlight button (even if the e-scooter is software-locked).

V3: Improper e-scooter password enforcement. The e-scooter does not
enforce the password set by the user viaMiHome. OnlyMiHome checks it to
prevent unauthorized access to the e-scooter from the victim’s smartphone.
Therefore, an attacker can tamper with a password-protected e-scooter
without knowing the password. Moreover, Mi Home does not provide a way
to deactivate the password, and the password does not change across factory
resets. If the adversary changes the e-scooter password, she prevents the
victim from controlling the e-scooter via Mi Home.

V4: Unprotected sensitive memory. Xiaomi custom protocols include an
unauthenticated command to read and write sensitive memory regions. For
example, the attacker can read and overwrite the victim’s password from the
e-scooter DRV subsystem memory. Moreover, she can tamper with the BLE
subsystem memory to lock, unlock, reboot, and shut down the e-scooter.

V5: Downgradable and insecure Session. Xiaomi custom protocols include
unauthenticated commands to downgrade the Session phase. For instance,
the attacker can downgrade a P4v1 Session to a P3 Session and a P2 Session
to a P1 Session. At the same time, P1, P2, and P3 Session phases are insecure
and provide no confidentiality, authenticity, or integrity guarantees. P1 uses
no key, P2 employs XOR-based obfuscation with a constant XOR mask,
and P3 uses a slightly more complex, yet predictable, obfuscation based on
AES-ECB and XOR operations.

V6: No BLE security despite device support. Xiaomi does not employ BLE
security at the link-layer despite device support but relies solely on its
custom security mechanisms at the application-layer. So, there is no defense
in depth, and the application-layer is a single point of failure.

Table 3 in the Appendix maps the six root causes of the four attacks
described earlier. MP attacks exploit V1, V2, V3, and V4. V1 and V3 lower the
attack requirements. V2 allows attacks from proximity without requiring
physical access to activate pairing mode. V4 enables dangerous operations
on the e-scooter by unauthorized attackers. SD attacks exploit V3, V4, V5,
and V6. V3 and V6 lower the attack requirements. V4 enables dangerous
operations on the e-scooter. V5 makes SD possible.

6 IMPLEMENTATION
Here, we present E-Spoofer, a new toolkit to carry out the four attacks
presented in Section 5, facilitate further reverse-engineering of Xiaomi
protocols and help in future security evaluations in the Xiaomi e-scooter
ecosystem.

6.1 Proximity Attack Module
The E-Spoofer proximity attack module performs proximity-based MP and
SD over-the-air, using BLE. We use Noble [23], a NodeJS module, to create a
BLE central that spoofs the Mi Home app and speaks Xiaomi protocols. We
replicate P4 Pairing and P4v1 Session, as these protocols are available on
all (up-to-date) Xiaomi e-scooters.

Our module reimplements P4 Pairing, including ECDH and pairing key
authentication. We perform ECDH and obtain a shared secret. We receive a
challenge from the e-scooter. We derive a pairing key and a one-time key
from the shared secret by running HKDF-SHA256. We utilize the one-time
key and the challenge for the sophisticated pairing key authentication by
running AES-CCM-128. Finally, we send the solution to the e-scooter and
complete P4 Pairing.

Our module reimplements P4v1 Session, including the HMAC-based
mutual authentication and AES-CCM encryption. We send a challenge to
the e-scooter, and receive a challenge from him. We retrieve the pairing key
generated during Pairing. We derive the directional session keys and IVs

from the pairing key and the two challenges by running HKDF-SHA256.
Then, we use the directional session keys and IVs to calculate the solution
of the e-scooter challenge by running HMAC-SHA256. Finally, we encrypt
with AES-CCM-128 the BLE commands (e.g., session downgrade, lock or
unlock the e-scooter, setting or changing the password) using the session
keys and IVs, and the packet count. The above-mentioned cryptographic
operations also require other input values found in the decompiled Mi Home
code, identical for all e-scooter models.

6.2 Remote Attack Module
The E-Spoofer remote attackmodule performs the attacks using amalicious
Android app. The app acts as a BLE central, spoofing Mi Home and speaking
Xiaomi protocols. It detects a vulnerable e-scooter via its BLE advertisement,
by analyzing the info included in the advertisement itself (i.e., e-scooter
name, model, security level, and pairing mode activation). When an e-
scooter is found in pairing mode, the app will pair and perform MP or SD.
We develop the app using the RxAndroidBle library [40], built on RxJava.

Our malicious app requires no root privileges but Bluetooth and location-
related permissions. On Android 9 or lower, these permissions are BLUE-
TOOTH, BLUETOOTH_ADMIN, and ACCESS_COARSE_LOCATION. An-
droid 10 and 11 require ACCESS_FINE_LOCATION instead of coarse locatio.
On Android 12 or higher, the app requires the BLUETOOTH_CONNECT
and BLUETOOTH_SCAN permissions.

6.3 Reverse-Engineering Module
The E-Spoofer reverse-engineering module contains the protocol dissec-
tors, Ghidra utilities, and Frida hooks that we developed while statically
and dynamically RE the Xiaomi e-scooter ecosystem. The research commu-
nity can use these modules to perform other experiments on the Xiaomi
ecosystem or adapt them to test similar ecosystems. We now describe each
submodule.

Protocol Dissectors. We develop Pyshark dissectors that automatically
parse BLE captures and detect custom Xiaomi payloads and advertisement
packets. They identify the Xiaomi protocol version from the packet header
and dissect the packet accordingly. We also develop Scapy scripts to com-
plement the Pyshark dissectors and offer a more advanced analysis.

We develop an advertisement packet analyzer for Xiaomi e-scooters. Our
script extracts the name of the scooter (e.g., MIScooter1234), the scooter
model (i.e., 0x20 for M365), the security level (i.e., 0x00 for P1, 0x01 for P2,
and 0x02 for P3 and P4) and pairing mode activation (i.e., 0x01 means not
active, 0x02 means active).

Ghidra Utilities. We utilize Ghidra [27] to statically RE portions of the
e-scooter’s BLE firmware. We used the open-source mijia library [22] to
identify some compiled functions in the firmware, related to BLE advertise-
ment and cryptographic mechanisms (e.g., AES, HKDF). We manually name
the functions related to Pairing and Session and release six YARA [47] rules
with their signatures to identify them automatically. We also release our
Ghidra project files to reproduce our setup, as part of E-Spoofer.

We discover how the session downgrade command is implemented in
the BLE firmware, and why P4v2 does not support it. A static memory
flag decides whether P3 packets (including the downgrade command) are
accepted or discarded. Firmware running P4v1 enables this flag, thus be-
coming vulnerable to SD. Firmware running P4v2 disables this flag, thus
discarding the downgrade command and becoming immune to SD. We did
not find any way to exploit this flag, unreachable by the unprotected sensitive
memory (V4) root cause presented in Section 5.3.

Frida Hooks. First, we decompile the Mi Home APK. We navigate the
decompiled code to find the classes and functions involved in Xiaomi se-
curity mechanisms and we write down their signature. Then, we develop
Frida [29] hooks to intercept these calls. We print the input and output
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values, and we modify them if needed. In particular, we cast the key to their
proper classes, before printing or altering them. Our hooks are written in
Javascript and can be run by invoking the Frida client from the console,
while connected to a rooted smartphone running a Frida server. Operating
with Mi Home, will print logs on the console.

7 EVALUATION
In this section, we evaluate the four attacks presented in Section 5 against
eight attack scenarios. We cover P1, P2, P3, and P4 – the proprietary Xiaomi
application-layer protocols reversed in Section 4, three popular Xiaomi e-
scooters models (i.e., M365, Essential, andMi 3), five Xiaomi BLE subsystems
(i.e., M365, Pro 1, Pro 2, Essential, and Mi 3), eight e-scooters’ BLE firmware,
and the Mi Home app for Android and iOS. We now describe our setup and
results.

7.1 Setup
Our evaluation setup enables experimenting with multiple e-scooters and
BLE configurations by using three e-scooters (M365, Essential, and Mi 3)
configured to host different BLE subsystems and firmware. We bought the
three e-scooters from Amazon for around 1.000 USD. We get access to
their BLE subsystem board by unscrewing the dashboard and removing the
display. This way, we broaden our evaluation while limiting the evaluation
costs. For example, by installing the Pro 1 and Pro 2 BLE subsystems and
firmware on the M365 e-scooter, we can test the Pro 1 and Pro 2 subsystems
without spending hundreds of USD to buy the actual e-scooter.

We test five BLE subsystem boards with eight BLE firmware. Three
boards are original parts of M365, Essential, and Mi 3 e-scooters. Two are
clone boards for Pro 1 and Pro 2. The M365 and Pro 1 subsystems include
an nRF51822 SoC [39] of the QFAA variant (16 KB of RAM). Instead, the
other subsystems use the QFAC variant with 32 KB of RAM. We obtain the
BLE firmware from the ScooterHacking repositories [34] or the Mi Home
app. We identify each firmware’s relative proprietary protocol (i.e., BLE072
runs P1, BLE081 runs P2, BLE090 runs P3, BLE122, BLE129, BLE152, and
BLE153 run P4v1, BLE157 runs P4v2).

To debug and manage the BLE subsystems, we use the ST-Link V2 de-
bugger [14], which is compatible with the nRF51 SoC family. Attaching the
debugger to a subsystem board requires manual effort, such as soldering the
data (SWDIO), clock (SWCLK), and power wires. We also remove discrete
components to unlock hardware-based debugging (i.e., C16 and R1 on the
M365 BLE board, C2 on the Pro 1 BLE board). Once debugging was unlocked,
we could run a GDB server for runtime debugging and operate on the SoC
RAM with tools such as OPENOCD [28], PySWD [31], MiDu Flasher [18],
and nRFSec [7]. Runtime access to the subsystem boards was essential to
produce the presented results. For example, via GDB, we discovered that the
e-scooters store the cleartext password in RAM, and via firmware flashing,
we restored a BLE subsystem in an unbricked state after tampering with it.

On the app side, we test Mi Home for Android and iOS on three smart-
phones. We evaluate a rooted Pixel 2 running Mi Home v7.11.704 and
Android 11, a rooted Oneplus 3 with Android 9 and a Realme GT with
Android 12, both running Mi Home v7.6.704, and an iPhone 7 running Mi
Home 7.12.204 and iOS v15.7. Our attacks do not require rooting a smart-
phone; we only need root privileges when dynamically instrumenting Mi
Home with Frida.

We run E-Spoofer, the novel toolkit we present in Section 6, from two
attacking devices. We deploy our proximity-based MP and SD attacks from
a laptop (i.e., Dell Inspiron 15 3000). We select the desired attack from the
command line, the victim e-scooter from a list of nearby targets, and the
script automatically performs MP or SD, displaying visual feedback. We
deploy our remote MP and SD attacks from a smartphone (e.g., Pixel 2).
Through the UI of our malicious app, we scan for nearby targets, connect
to a victim e-scooter, and perform MP or SD.

7.2 Results
Table 2 shows our evaluation results. The first two columns indicate the BLE
firmware version and the protocol they run. The third column represents
the e-scooter model, which hosts the BLE subsystem shown in the fourth
column. We specify the SoC variant of the BLE subsystem board in column
five. The remaining columns highlight whether a BLE firmware version is
vulnerable to MP and SD in their proximity-based and remote variant.

In our attack scenarios, we exploit eight unique BLE firmware, including
the latest firmware available on the M365, Essential, and Mi 3. We test the
four Xiaomi proprietary protocols we identified, including the two variants
of P4 Session (i.e., P4v1 and P4v2), and flash them on five BLE subsystems
from different e-scooter models. We confirm that BLE subsystems using
the nRF51822 QFAA SoC are incompatible with newer e-scooters models
(i.e., Essential, Mi 3), as the latter requires BLE subsystem boards with the
nRF51822 QFAC SoC. Similarly, newer boards cannot be installed on the
M365. We demonstrate that all evaluated BLE subsystems, regardless of
their application-layer protocol, are vulnerable to the MP attacks. This
happens due to authorization and authentication issues in all four Xiaomi
protocols that we discuss and fix in Section 8. We also demonstrate that
all evaluated BLE subsystems running P4v1 or P2 are vulnerable to SD to
P3 or P1. We highlight that P1, P2, and P3 have no security guarantees
compared to the more secure P4. This fact makes SD from P4v1 to P3
particularly threatening. We confirm that P4v2 is immune from the SD
attacks, as discussed in Section 6.

Our E-Spoofer toolkit proved to be effective on all evaluated Xiaomi
e-scooters. Unfortunately, we could not evaluate the Xiaomi Mi 4 e-scooter
due to its release time (end of 2022). E-Spoofer can be easily extended to
support any e-scooter ecosystem that protects their communications with a
proprietary application-layer protocol on top of BLE, including the Xiaomi
Mi 4 e-scooter. To attain this goal, future researchers will have to reverse-
engineer the proprietary application-layer protocols run by that specific
e-scooter ecosystem. In the Appendix, we present our reverse-engineering
methodology, which is generalizable to any BLE e-scooter and utilizes state-
of-the-art tools and techniques. We also confirm that our toolkit can change
the unknown e-scooter password set by an adversary, restoring the user
capability of accessing and managing the e-scooter from Mi Home, as a
post-attack defence.

During our experiments, we even identified and disclosed a severe UI
authentication bug in Mi Home for Android and iOS. FromMi Home v7.6.704
onwards, the user can lock or unlock a password-protected e-scooterwithout
entering the password. The cause is a 1 second UI delay between the app
wake-up and the password prompt. We confirmed this bug using the same
smartphones we describe in Section 7.1. Since the password is only checked
by Mi Home, due to the improper e-scooter password enforcement
(V3) root cause we discuss in Section 5.3, the attacker can bypass app-based
password protection, unlock the e-scooter, and steal it. As described in the
responsible disclosure paragraph, Xiaomi acknowledged this bug, rewarding
us with a bounty, but gave no information about a fix.

8 COUNTERMEASURES
To address the four impactful attacks described in Section 5, we design and
evaluate two usable, backward-compliant, and low-cost countermeasures.
The first countermeasure stops the MP attacks by providing a stronger
pairing mechanism that is appropriately authorized and authenticated. The
second countermeasure fixes the SD attacks by patching away the hidden
downgrade command from the vulnerable e-scooter BLE firmware. We now
describe them in detail and release them as part of E-Spoofer.

8.1 Authorized and Authenticated Pairing
The MP attacks presented in Section 5.1 are enabled by authorization and
authentication issues affecting P1, P2, P3, and P4 Pairing phases. We develop
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Table 2: Evaluation results. The first and second columns represent the BLE firmware version and the Xiaomi protocol version.
The third column states the e-scooter model, which hosts the BLE subsystem board, specified in the fourth column, indicating if
the BLE board is original from Xiaomi or a clone. The fifth column specifies the System-on-Chip present on the BLE subsystem.
The last four columns highlight if the evaluated combination is vulnerable to our proximity-based and remote Malicious
Pairing (MP) and Session Downgrade (SD) attacks. A hyphen (-) means the attack does not apply to that target.

Proximity Remote

Firmware Protocol E-Scooter BLE Sub. Board SoC MP SD MP SD

BLE072 P1 M365 M365 (Original) nRF51822 QFAA ✓ - ✓ -
BLE081 P2 M365 M365 (Original) nRF51822 QFAA ✓ ✓ ✓ ✓

BLE090 P3 M365 Pro 1 (Clone) nRF51822 QFAA ✓ ✗ ✓ ✗

BLE122 P4v1 M365 M365 (Original) nRF51822 QFAA ✓ ✓ ✓ ✓

BLE129 P4v1 M365 Pro 2 (Clone) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE152 P4v1 Essential Essential (Original) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE153 P4v1 Mi 3 Mi 3 (Original) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE157 P4v2 Mi 3 Mi 3 (Original) nRF51822 QFAC ✓ ✗ ✓ ✗

a better pairing phase addressing both issues in a backward-compatible way.
This countermeasure addresses the unauthenticated pairing (V1), uninten-
tional pairing mode (V2), and improper e-scooter password enforcement (V3)
root causes from Section 5.3.We now describe howwe provide authorization
and authentication during pairing.

Authorized Pairing Mode. We require the Xiaomi Pairing phase to imple-
ment a dedicated pairing activation command that also notifies the user. In
particular, to enter pairing mode, the user must press the headlight button
while holding down the left brake. Then, the e-scooter’s tail light should
blink until the completion of Pairing. This fix prevents unexpected and
unnotified pairing sessions such as the ones exploited in the MP attacks
by waiting until the victim presses the headlight button. The fix is trivial
to implement for Xiaomi as it requires minimal modifications to the BLE
firmware. On our side is challenging to test as we do not have access to the
BLE firmware source code and build tools.

Password-Protected Authenticated Pairing. We require a password pro-
tected pairing protocol to prevent an unauthenticated attacker from pairing
with a victim e-scooter. This fix prevents the MP attacks even if the adver-
sary manages to put the e-scooter in pairing mode. This countermeasure is
easy to implement by extending the Mi Home password protection func-
tionality. In particular, while pairing an e-scooter with Mi Home for the first
time (including after a factory reset), the user should set a password via Mi
Home. Then, the password should be stored on Mi Home and the e-scooter
and enforced in case of re-pairing. Hence, an attacker cannot maliciously
pair with the e-scooter as she cannot provide the password to the e-scooter.
We successfully evaluated this fix using our toolkit to replicate P4 Pairing
between an e-scooter and Mi Home.

8.2 Anti-Downgrade BLE Firmware Patching
The SD attacks presented in Section 5.2 are enabled by a vendor-specific
command, which downgrades Xiaomi Session P4v1 to P3, and P2 to P1. We
focus on patching P4v1 because e-scooter running the insecure P2 should
update their BLE firmware to the latest version. Regardless, the downgrade
command is present even in recent BLE firmware versions, including the
latest M365 and Pro 1 BLE firmware. We release a script capable of finding
and removing the downgrade command from a vulnerable BLE firmware to
fix this issue. Our script addresses the downgradable and insecure Session
(V5) root cause presented in Section 5.3.

The script looks for a specific conditional statement and patches it to
allow only P4 Session. Hence, the patch introduces no overheads (e.g.,
memory, computation). Our scripts opens the binary firmware, finds the
function responsible for BLE packet analysis, and alters the conditional
statement that accepts either P3 and P4 packets, causing it to only accept P4
packets. More specifically, it replaces the cmp instruction 5a2f with 552f.
As a result, the attacker can neither downgrade P4v1 to P3, nor send any
other insecure P3 command.

Developing the script required a one-time manual overhead to under-
stand how to remove the downgrade command. Then we automated our
binary-patching process. We reuse the BotoX M365 patcher tool [6] to en-
crypt the patched firmware with the Tiny Encryption Algorithm (TEA). We
reuse the third-party M365DownG app [9] to flash the zipped and newly
encrypted BLE firmware.

We successfully evaluated our fix on the M365 and Pro 1 e-scooters.
We flashed a patched BLE122 firmware on the e-scooters and deployed the
proximity-based and remote SD attacks. Both attacks failed, as downgrading
the protocol from P4v1 to P3 was impossible with our fix.

9 RELATEDWORK
E-Scooters Security and Privacy Issues. Academic research on e-scooter

security and privacy is scarce, especially on personal e-scooters. Zimperium,
a mobile security company, exploits the locking system to stop a running e-
scooter [52]. The hacker Lanrat evaluated M365 authentication, discovering
that it is not enforced by the e-scooter [16]. Both attacks were publicly
disclosed in 2019 and only targeted the Xiaomi M365 model. In our work,
we target all Xiaomi e-scooter models from 2016 to 2021.

Security researchers focused on e-scooter rental ecosystems instead of
private e-scooters. In [1], the authors identify some vulnerabilities in the
APIs exposed by the Bird e-scooter sharing platform, which utilizes M356
e-scooters [5]. Public e-scooters from the Lime sharing company are weak
to a man-in-the-middle attack that allows for arbitrarily swapping audio
files [26]. N. Vinayaga-Sureshkanth et al. [46] provide an extended evalua-
tion of Android e-scooter rental applications. In particular, they investigate
the user-related data collected and shared with third parties, which could
monitor the users’ schedules and visited locations. In our work, we perform
a security assessment. Therefore, we consider out-of-scope any privacy
study on user data.
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E-Scooters Hacking Communities. ScooterHacking [37] is the largest e-
scooter hacking community with around 20.000 members. ScooterHacking
releases hacking tools [34] and offers a third-party companion app [36]
for Xiaomi e-scooters. Expert users can download custom DRV and BLE
firmware to alter the e-scooter performances (e.g., maximum speed). Alterna-
tively, users can build their DRV firmware with the ScooterHacking Custom
Firmware Toolkit [33] and the BotoX Xiaomi M365 Firmware Patcher [6].
These tools offer limited customizability as they can only binary patch
hardcoded and unsigned portions of the firmware.

Third-party researchers provided non-peer-reviewed blog posts about
the BLE traffic exchanged by some Xiaomi e-scooters [8, 12, 24, 35]. These
resources helped in the initial stage of our work but failed short on the
technical details and e-scooter coverage. For example, some report confuses
encryption with obfuscation, giving a false sense of security. Or none of the
reports cover the session downgrade command, and the flag responsible for
it. This work instead provides the first comprehensive and sound description
and security evaluation of these protocols.

Security Analysis of Xiaomi Ecosystems. Xiaomi manages multiple ecosys-
tems, including e-scooters, smartphones, smart home devices, and fitness
trackers. In [11], the authors root a Xiaomi vacuum cleaning robot, inspect
its internals, assess data privacy, and flash the robot with custom firmware.
Another previous work [44] also finds several security issues with Xiaomi
vacuum cleaners.

Several researchers [10, 15, 19, 49] highlight the limitations of the Xiaomi
application-layer protocols run over BLE by the Mi Band fitness trackers.
These devices were found vulnerable to eavesdropping, man-in-the-middle,
and impersonation. Using a fuzzing approach, X. Du et al. [13] find 95 vul-
nerabilities in the R1D Xiaomi router. Other Xiaomi IoT devices evaluated in
the academic literature are Xiaomi smart speakers [21] and Xiaomi security
cameras [43, 45].

BLE Misuse in Android. Researchers identified multiple flaws in Android
BLE APIs. For example, Android saves Bluetooth keys in data structures
shared among different apps [25, 41], allowing malicious apps to communi-
cate illegitimately with paired devices. In [42], V. Toubiana et al. present
a vulnerability, available from Android 6 to Android 11, that allows an
Android app to perform a BLE scan without requiring location permission.
Android applications may also misuse the BLE link-layer, allowing attackers
to bypass encryption and authentication procedures [51]. In this paper, we
focus on application-layer protocols instead and only utilize Android BLE
APIs in our remote threat model.

Attacks on BLE Pairing. Several attacks over the years have targeted BLE
link-layer pairing. In 2013, Crackle [32] broke the Just Works and Passkey
modes of BLE Legacy pairing by brute-forcing their temporary key. In 2019,
the KNOB [2] attack minimized the entropy of the encryption key in BLE
Legacy pairing and Secure Connections, allowing for brute-force attacks on
that key. In 2021, Method Confusion [48] performed a man-in-the-middle
attack on BLE Secure Connections by separately pairing two devices in two
different pairing modes. Xiaomi e-scooters do not utilize BLE link-layer
pairing. Instead, we reverse-engineer and attack the proprietary Xiaomi
Pairing phase (and Session) at the application-layer.

10 CONCLUSION
We present the first security evaluation of the proprietary security protocols
employed by Xiaomi to protect its e-scooter ecosystem since 2016. We
uncover and reverse-engineer four protocols using ad-hoc Pairing and
Session mechanisms at the application-layer on top of an insecure BLE
link-layer. We describe their (lack of) security properties.

We show four novel attacks to exploit protocols at the specification level
requiring realistic and low-cost attacker models (i.e., a proximity-based
adversary with a laptop or remote attacker who installed a malicious app on

the victim’s smartphone). The attacks enable stealing a software-locked and
password-protected e-scooter from its owner or preventing the owner from
using the e-scooter via Mi Home. The threats pivot on MP and SD attack
strategies and are enabled by six severe root causes that we also uncover.

We open-source E-Spoofer, a toolkit implementing our attacks and offer-
ing RE utilities for the Xiaomi e-scooter ecosystem (e.g., protocol dissectors,
Ghidra scripts, and Frida hooks). We successfully evaluate our attacks in
eight relevant scenarios covering five e-scooter BLE subsystems and eight
BLE firmware. We empirically demonstrate that our attacks have a critical
impact on the Xiaomi ecosystem (e.g., all reversed protocols are affected
by at least two of our four attacks), amounting to millions of exploitable
devices.

We propose two practical, low-cost, and backward-compliant counter-
measures to stop our attacks and release them in our toolkit. We propose
Authorized Pairing Mode and Password-Protected Authenticated Pairing
to fix the MP attacks and a script to stop the SD attacks by automatically
patch the vulnerable e-scooter BLE firmware.
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APPENDIX

RE Methodology
We present the RE methodology that we employed to reconstruct the pro-
tocols described In Section 4. This methodology can be reused by other
researchers to tackle similar RE efforts (e.g., reversing a proprietary and
unknown application-layer protocol implemented on top of an insecure
BLE link-layer). Specifically, we explain how we analyzed the Xiaomi and
BLE traffic, the Mi Home app, and the scooter’s BLE firmware.

Xiaomi and BLE Traffic. The BLE e-scooter exposes a GATT server with
unknown characteristics used to exchange the proprietary P1, P2, P3, P4 pay-
loads. We enumerate these characteristics with a GATT client program (e.g.,
gatttool). The e-scooter utilizes a Xiaomi custom GATT service (0xFE95),
and its UPNP (0x0010) and AVDTP (0x0019) characteristics for Pairing and
Session, and the Nordic UART service for the encrypted communication
during Session. Then, we run multiple Pairing and Session phases using
different combinations of e-scooter models, BLE subsystems, and firmware.
We capture the generated BLE traffic (HCI-layer, including GATT) in dedi-
cated pcap files. The pcap files are produced by our Android smartphone
running Mi Home with Developer Options, and HCI Snooplog turned on.
We open the pcaps in Wireshark with custom display filters to focus only
on the proprietary application-layer payloads. We use Pyshark and Scapy to
reverse the Xiaomi payloads and develop custom dissection classes capable
of decoding and re-encoding the packets. For example, we developed the
PairChal and SessRand classes to dissect P4 Pairing and Session security
mechanisms. Table tab:appendix-opcodes lists BLe packets from P3 and P4
Pairing and Session phases.

Mi Home for Android. For Mi Home, we focused on its Android version
because it is much easier to inspect and reverse than its iOS counterpart.
We locate the Mi Home APK with adbshellpmpathcom.xiaomi.smarth
ome. We pulled It with adb pull and extracted its content, including the
decompiled Smali and Java code, with apktool and jadx. We perform static
analysis of the decompiled Java code, looking for API calls to cryptographic
primitives and Android’s BLE framework. In parallel, we use Frida and
Objection for dynamic binary instrumentation of Mi Home. Frida requires
a rooted phone and a Frida server application running on the phone. With
our dynamic tests, we can list all the Classes involved with Mi Home, isolate
the ones related to P1, P2, P3, and P3, hook them to observe their runtime
execution, and reimplement some of their behaviors. For example, we found
that Mi Home, during Pairing, calls _m_j.fyp.O000000o to perform ECDH,
and, during Session, calls _m_j.fys.O000000o to perform the HMAC-based
authentication and _m_j.fyl.O000000o to encrypt communications.
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E-Scooter BLE Firmware. Reversing the e-scooter BLE firmware is challeng-
ing, as is a stripped binary with no debugging symbols. We obtain multiple
firmware samples from different sources, i.e., ScooterHacking repositories,
the Mi Home app storage, the Xiaomi backend, and by reading the BLE
SoC memory at runtime via the ST-Link debugger. We statically analyze
the firmware using Ghidra configured for ARM Cortex M0 little-endian.
We also configure the Ghidra memory layout using the nRF51822 Product
Specification 3.4 [38] from Nordic Semiconductors. In particular, we consult
the instruction table to retrieve the memory addresses for instantiating the
peripherals such as the FICR_UICR, POWER, CLOCK, and GPIO. We also
use the ST-Link debugger to inspect the firmware at runtime using gdb,
dumping its memory and flashing it with different BLE firmware versions.

Table 3: Mapping between the vulnerabilities (rows) and the
presented attacks (columns). We put a ✓ if an attack exploits
a vulnerabilit. Otherwise, we put an ✗. We split our two at-
tacks, Malicious Pairing (MP) and Session Downgrade (SD),
depending on their threat model, either proximity-based or
remote.

Proxim. Remote

Vulnerability MP SD MP SD

V1: Unauthenticated Pairing ✓ ✗ ✓ ✗

V2: Unintentional Pairing mode ✓ ✗ ✓ ✗

V3: Improper e-scooter passw. enfor. ✓ ✓ ✓ ✓

V4: Unprotected sensitive memory ✓ ✓ ✓ ✓

V5: Downgradable and insec. Session ✗ ✓ ✗ ✓

V6: No BLE sec. despite device support ✗ ✓ ✗ ✓

Table 4: BLE packets for the Xiaomi protocol P3 and P4. The
first and second columns indicate the name we assigned to
the packet and the protocol which uses them. The third and
fourth columns specify who sends the packet and its content.
The value "00X0" stands for an increasing counter (i.e., 0010,
0020, 0030, 0040) placed in a fragmented packet.

Packet P From Content

SessReq P3 App 5AA5 0E 3D21 5D00 Serial

SessReqOk P3 Esc 5AA5 0E 213D 5D00 Serial

Comms P3 App, Esc 5AA5 Len From To Cmd Pay

PairReq P4 App A2000000

PairReqOk P4 Esc 000000000200

PairChal1 P4 Esc 0010 01000000 Chal2Part

PairChal2 P4 Esc 0020 Chal2Part

PairECStart P4 App, Esc 000000030400

PairPubKey P4 App, Esc 00X0 PubKey4Part

PairECEnd P4 App 000000000200

PairSol P4 App 00X0 PairSol2Part

PairSolAck P4 Esc 00000100

PairOk P4 App 13000000

PairOkAck P4 Esc 11000000

SessReq1 P4 App 24000000

SessReq2 P4 App 0000000B0100

SessRand P4 App, Esc 0100 AuthChal

SessAskRand P4 Esc 0000000C0200

SessSol P4 App, Esc 00X0 AuthSol2Part

SessOk P4 Esc 21000000

Comms P4 App, Esc 55AB Len Count Encr Cksm
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