BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

ACM CCS'23

Daniele Antonioli

(EURECOM, S3)

Bluetooth (BT)

- BT is a pervasive low-power wireless technology
 - Specified in <u>bluetooth-core.pdf (v5.4)</u> (layers, security, ...)
 - BC: Bluetooth Classic
 - BLE: Bluetooth Low Energy
 - Used by smartphones, laptops, cars, wearables, sensors, ...
- One BT spec vulnerability \rightarrow Billions of exploitable devices
 - 2021: BLUR cross-transport overwrites on <u>BC/BLE</u>
 - 2020: BIAS authentication bypasses on <u>BC</u>
 - 2019: KNOB key downgrades on <u>BC</u> and <u>BLE</u>

BT Security

- Pairing
 - Pairing key (PK), long term, BLE entropy negotiation
 - Optionally authenticated (numeric PIN, ...)
- Session Establishment
 - Session key (SK), fresh, BC entropy negotiation
 - o SK = kdf(PK, pars)
- Negotiable security mode
 - Secure Connections (SC)
 - Legacy Secure Connections (LSC)

Forward and Future Secrecy (FoS, FuS)

- Forward Secrecy (FoS)
 - Protects past sessions against key compromise
 - o Eg: key = HKDF(const, key_past)
- Future Secrecy (FuS)
 - Protects future sessions against key compromise
 - o Eg:key_future = HKDF(dhss, key)
- BT FoS and FuS guarantees?
 - Not discussed in the BT spec and no prior evaluation
 - Despite **widespread** in the real-world (TLS1.3, Signal, ...)

Contributions

- First study on BT FoS and FuS
- Uncover 2 FoS/FuS vulns in BC SK derivation
- Develop 6 BLUFFS attacks breaking BC sessions' FoS/FuS
- Exploit 18 popular devices (Intel, Broadcom, Apple, Google, Microsoft, CSR, Logitech, Infineon, Bose, Dell, Xiaomi, …)
- Fix the attacks with a compliant and practical protocol
- Report critical findings to BT SIG, get <u>CVE-2023-24023</u>
- Release <u>BLUFFS toolkit</u> to test the attacks and <u>BC FoS/FuS</u>

BLUFFS Threat model

- BC should provide FoS and FuS among sessions
 - Fresh SKs, PK not compromised
- Alice (Central) and Bob (Peripheral)
 - Paired and share PK
 - Use SC or LSC
- Charlie (attacker)
 - Model: proximity-based, cannot compromise PK or all SKs
 - Goals: break sessions' FoS and FuS
 - Impact: impersonate and MitM devices across sessions

BLUFFS Attacks

- t_0 : Alice and Bob establish PK
- t₁: Charlie forces weak SK_c, saves SK_c kdf pars, sniffs s_{t1}, ...
- t_2 : Charlie brute forces SK_c and breaks s_{t1} , ..., s_{t2} (breaks FoS)
- t_3 : Charlie re-forces SK_c and breaks s_{t3} , s_{t4} , ... (breaks FuS)

BLUFFS Attacks

- t_0 : Alice and Bob establish PK
- t_1 : Charlie forces weak SK_c, saves SK_c kdf pars, sniffs s_{t_1} , ...
- t_2 : Charlie brute forces SK_c and breaks s_{t1} , ..., s_{t2} (breaks FoS)
- t_3 : Charlie re-forces SK_c and breaks s_{t3} , s_{t4} , ... (breaks FuS)
- t_∞: Charlie celebrates (One More Time)!

t1: Force weak SK_c, save SK_c kdf pars, sniff [A3, A6]

t2: Brute force SK_c and break s_{t1}, ..., s_{t2} (break FoS)

- SK_c has 56 bits of entropy (SE = 7)
 - \circ 2⁵⁵ trials on average (other than 2⁵⁵ x sessions)
 - 56 bit sym keys broken since DES (<u>Deep Crack</u>, <u>COPACOBANA</u>)
 - <u>keylenght.com</u> sets a min of 84 bits (56 bits in 1982)
 - Doable in weeks with a low-cost setup
- SK_c has 8 bits of entropy (SE = 1)
 - Doable in real time (even with pen and paper)

t3: Re-force SK_c and break s_{t3}, s_{t4}, ... (break FuS) [A3, A6]

BLUFFS Attacks Summary and Root Causes (Vulns)

BLUFFS attack	RC1	RC2	RC3	RC4
A1: Spoofing a LSC Central	\checkmark	\checkmark	\checkmark	×
A2: Spoofing a LSC Peripheral	\checkmark	\checkmark	\checkmark	×
A3: MitM LSC victims	\checkmark	\checkmark	\checkmark	×
A4: Spoofing a SC Central	\checkmark	\checkmark	\checkmark	\checkmark
A5: Spoofing a SC Peripheral	\checkmark	\checkmark	\checkmark	\checkmark
A6: MitM SC victims	\checkmark	\checkmark	\checkmark	\checkmark

RC1: LSC SK diversification is unilateral
RC2: LSC SK diversification does not use nonces
RC3: LSC SK diversifiers are not integrity protected
RC4: Downgrading SC to LSC does not require authentication

BLUFFS Attacks Exploiting 18 devices (17 chips)

Chip	Device(s)	BTv	A1	A2	A3	A4	A5	A6
LSC Victims								
Bestechnic BES2300	Pixel Buds A-Series ³	5.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Apple H1	AirPods Pro	5.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cypress CYW20721	Jaybird Vista	5.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CSR/Qualcomm BC57H687C-GITM-E4	Bose SoundLink ^{1,2}	4.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Intel Wireless 7265 (rev 59)	Thinkpad X1 3rd gen	4.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CSR n/a	Logitech BOOM 3 ¹	4.2	\checkmark	×	\checkmark	\checkmark	×	\checkmark
SC Victims								
Infineon CYW20819	CYW920819EVB-02	5.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cypress CYW40707	Logitech MEGABLAST	4.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Qualcomm Snapdragon 865	Mi 10T ⁴	5.2	\checkmark	\checkmark	\checkmark	×	×	×
Apple/USI 339S00761	iPhones 12 ⁴ , 13 ⁴	5.2	\checkmark	\checkmark	\checkmark	×	×	×
Intel AX201	Portege X30-C ⁴	5.2	\checkmark	\checkmark	\checkmark	×	×	×
Broadcom BCM4389	Pixel 6 ⁴	5.2	\checkmark	\checkmark	\checkmark	×	×	×
Intel 9460/9560	Latitude 5400 ⁴	5.0	\checkmark	\checkmark	\checkmark	×	×	×
Qualcomm Snapdragon 835	Pixel 2 ⁴	5.0	\checkmark	\checkmark	\checkmark	×	×	×
Murata 339S00199	iPhone 7 ⁴	4.2	\checkmark	\checkmark	\checkmark	×	×	×
Qualcomm Snapdragon 821	Pixel XL ⁴	4.2	\checkmark	\checkmark	\checkmark	×	×	×
Qualcomm Snapdragon 410	Galaxy J5 ⁴	4.1	\checkmark	\checkmark	\checkmark	×	×	×

Conclusion and Q&A

- First study on BT FoS and FuS (paper, slides)
- Uncover 2 FoS/FuS vulns in BC SK derivation
- Develop 6 BLUFFS attacks breaking BC sessions' FoS/FuS
- Exploit 18 popular devices (Intel, Broadcom, Apple, Google, Microsoft, CSR, Logitech, Infineon, Bose, Dell, Xiaomi, …)
- Fix the attacks with a compliant and practical protocol
- Report critical findings to BT SIG, get <u>CVE-2023-24023</u>
- Release <u>BLUFFS toolkit</u> to test the attacks and <u>BC FoS/FuS</u>