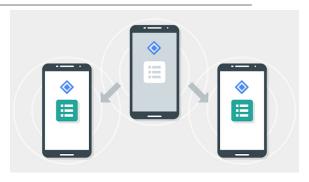
NDSS 2019 @ San Diego, US

Nearby Threats: Reversing, Analyzing, and Attacking Google's 'Nearby Connections' on Android


<u>Daniele Antonioli</u>¹, Nils Ole Tippenhauer², Kasper Rasmussen³

¹Singapore University of Technology and Design (SUTD)

²CISPA Helmholtz Center for Information Security


³University of Oxford

What are Google Nearby Connections?

- Public API for Android and Android Things
 - In-app proximity-based services
 - E.g. peer-to-peer file editing
- Implemented in the Google Play Services
 - Available across different Android versions
 - Applications use it as a shared library

Why Analyzing Nearby Connections?

- Wide attack surface
 - ► Android (version ≥ 4.0) and Android Things
 - Uses Bluetooth and Wi-Fi (at the same time)
- Proprietary technology
 - No public specifications
 - Implementation is closed-source and obfuscated

Our Core Contributions

First (security) analysis of Nearby Connections

- Uncovers its proprietary mechanisms and protocols
- Based on reversing its Android implementation

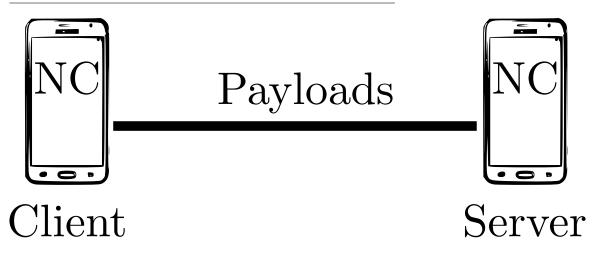
Re-implementation of Nearby Connections (REarby)

- Exposes parameters not accessible with the official API
- Impersonates nearby devices from any application

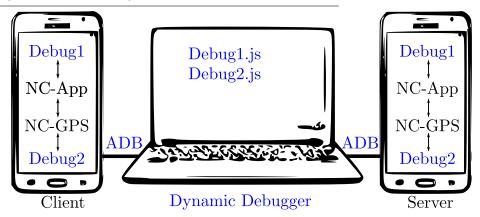
Attacking Nearby Connections on Android

- Connection manipulation and range extension attacks
- Responsible disclosure with Google

Nearby Connections Public Information



Server


- Server advertises a service, client discovers it (sid)
- Connection strategies: P2P_STAR and P2P_CLUSTER

Nearby Connections Public Information 2

- Client and server connect using Bluetooth and/or Wi-Fi
- Nodes exchange encrypted payloads (peer-to-peer)

Our Dynamic Binary Instrumentation

- Workhorse: Frida, https://www.frida.re
 - Profiling of processes, e.g. NC-App, NC-GPS
 - Hook function and methods calls
 - Override parameters and return values
 - Read and write processes' memory

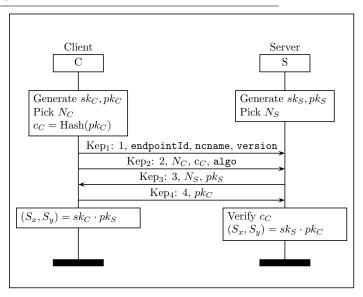
Discovery: Bluetooth BR/EDR name and BLE reports

- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated

- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated
- **Key Exchange Protocol**: establishment of a shared secret

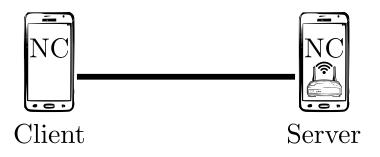
- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated
- **Key Exchange Protocol**: establishment of a shared secret
- **Optional Authentication**: based on the shared secret

- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated
- **Key Exchange Protocol**: establishment of a shared secret
- **Optional Authentication**: based on the shared secret
- **Application Layer Connection Establishment**: interactive


- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated
- **Key Exchange Protocol**: establishment of a shared secret
- **Optional Authentication**: based on the shared secret
- **Application Layer Connection Establishment**: interactive
- **Key Derivation Functions**: session, AES and HMAC keys

- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated
- **Key Exchange Protocol**: establishment of a shared secret
- **Optional Authentication**: based on the shared secret
- **Application Layer Connection Establishment**: interactive
- **Key Derivation Functions**: session, AES and HMAC keys
- Optional Physical Layer Switch: Bluetooth BR/EDR to Wi-Fi

- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated
- **Key Exchange Protocol**: establishment of a shared secret
- **Optional Authentication**: based on the shared secret
- **Application Layer Connection Establishment**: interactive
- **Key Derivation Functions**: session, AES and HMAC keys
- Optional Physical Layer Switch: Bluetooth BR/EDR to Wi-Fi
- **Exchange Encrypted Payloads:** 30 seconds timeout


- **Discovery**: Bluetooth BR/EDR name and BLE reports
- **Connection Request**: Bluetooth BR/EDR, not authenticated
- **Key Exchange Protocol**: establishment of a shared secret
- **Optional Authentication**: based on the shared secret
- **Application Layer Connection Establishment**: interactive
- **Key Derivation Functions**: session, AES and HMAC keys
- Optional Physical Layer Switch: Bluetooth BR/EDR to Wi-Fi
- **Exchange Encrypted Payloads:** 30 seconds timeout
- Disconnection

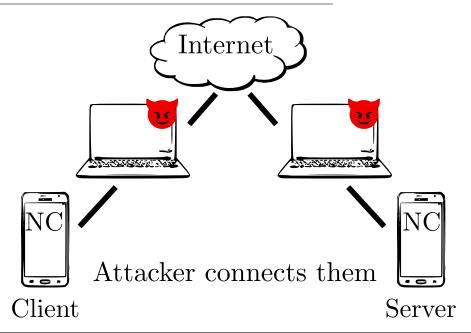
Key Exchange Protocol (KEP)

Based on ECDH, NIST P256 curve, shared secret is S_x

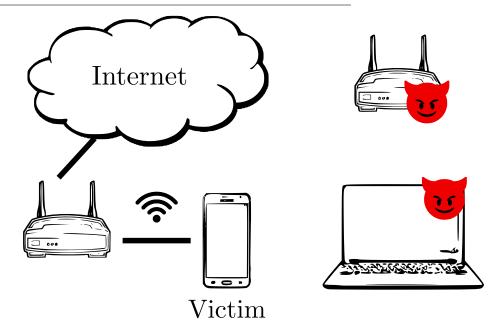
Optional Physical Layer Switch

- Bluetooth to soft access point (Wi-Fi Direct, hostapd)
 - Server instructs the client over Bluetooth
 - Client contacts the server over Wi-Fi

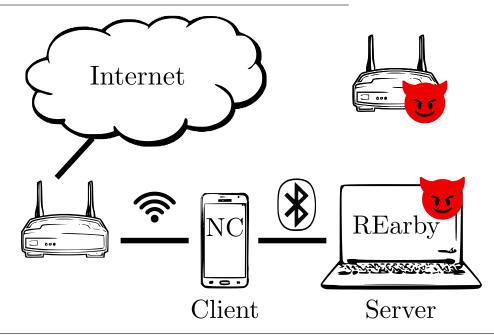
Range Extension MitM Attack

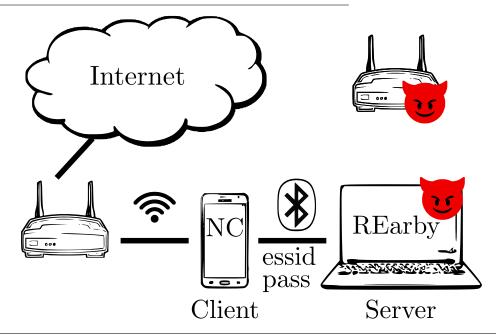


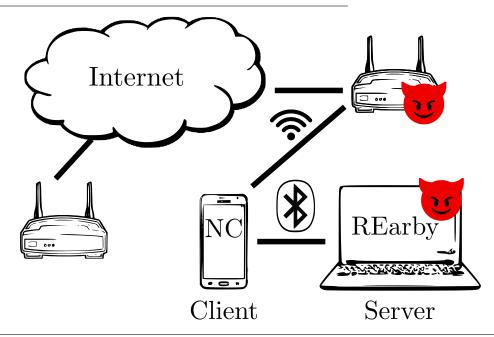
Victims are not nearby

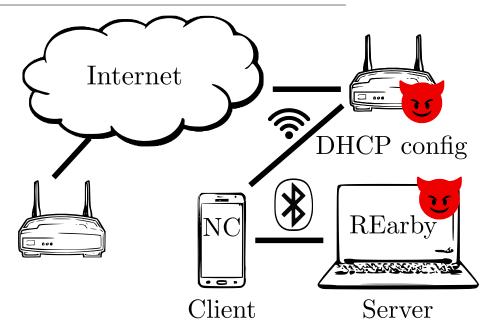


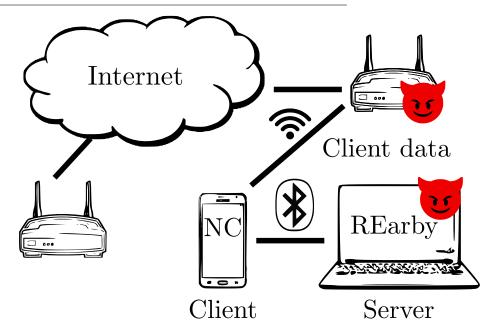
Server


Range Extension MitM Attack


Soft Access Point Manipulation Attack


Victim Connects to Attacker's REarby Server


Attacker Manipulates Bluetooth to Wi-Fi Switch


Victim Connects to Attacker's Wi-Fi AP

Attacker Configures Victim's Network Interface

Attacker Eavesdrops All Wi-Fi Traffic

Conclusions

- First security analysis of Nearby Connections
- Reversed its Android implementation and re-implemented it (REarby)
- Range extension and soft access point manipulation attacks
- Try the Soft Access Point Manipulation attack:

https://github.com/francozappa/REarby/tree/master/poc-hostapd

Conclusions

- First security analysis of Nearby Connections
- Reversed its Android implementation and re-implemented it (REarby)
- Range extension and soft access point manipulation attacks
- Try the Soft Access Point Manipulation attack:

```
https://github.com/francozappa/REarby/tree/master/poc-hostapd
```

Thanks for your time! Questions?