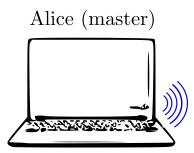
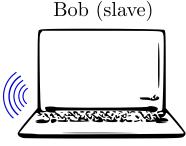
USENIX 2019 @ Santa Clara, US

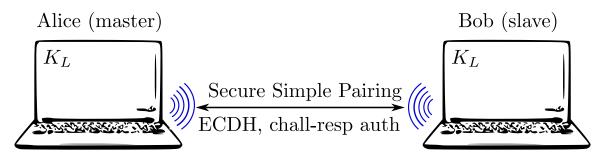
The KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR

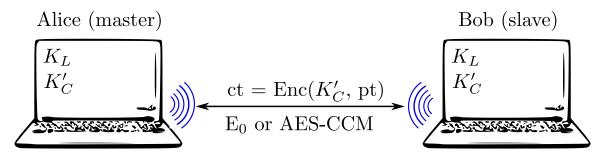
Daniele Antonioli¹, Nils Ole Tippenhauer², Kasper Rasmussen³

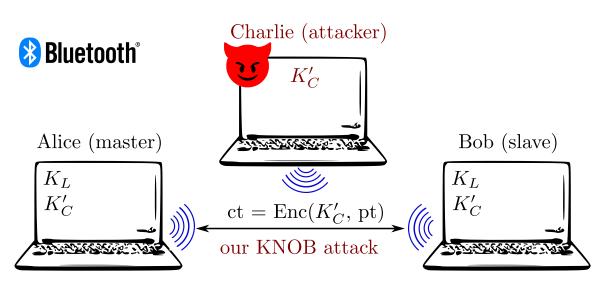

¹Singapore University of Technology and Design (SUTD) ²CISPA Helmholtz Center for Information Security ³University of Oxford


Bluetooth

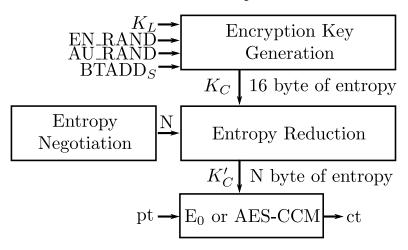
- Bluetooth (BR/EDR or Classic)
 - Pervasive wireless technology for personal area networks
 - E.g., mobile, automotive, medical, and industrial devices
- · Bluetooth uses custom security mechanisms (at the link layer)
 - Open but complex specification
 - No public reference implementation



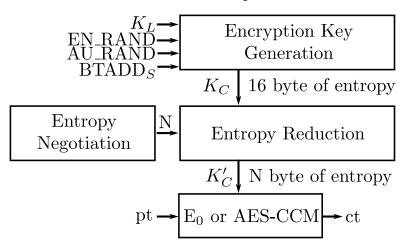

移 Bluetooth°


移 Bluetooth°

移 Bluetooth°

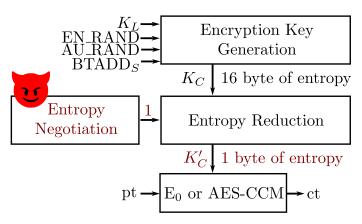


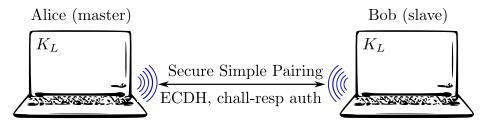
Bluetooth Security Mechanisms


Encryption Key Negotiation Of Bluetooth (KNOB)

• Paired devices negotiate an encryption key (K'_C) upon connection

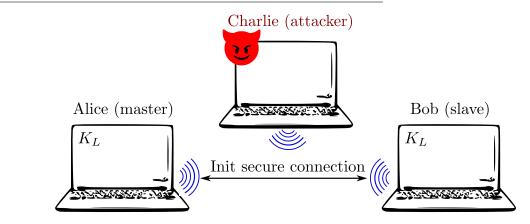
Encryption Key Negotiation Of Bluetooth (KNOB)

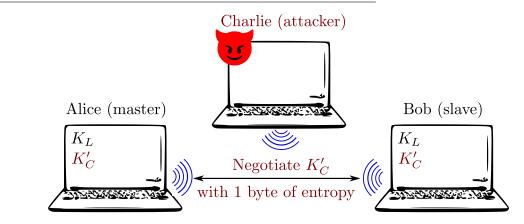

• Paired devices negotiate an encryption key (K'_C) upon connection



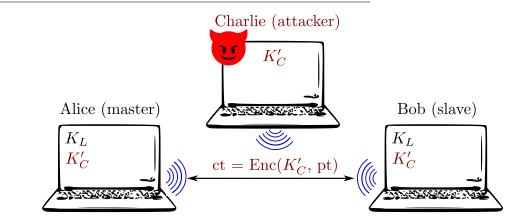
Bluetooth allows K'_{C} with 1 byte of entropy and does not authenticate Entropy Negotiation

Our Contribution: Key Negotiation Of Bluetooth (KNOB) Attack


- Our Key Negotiation of Bluetooth (KNOB) attack sets N=1, and brute forces K'_C
 - Affects any standard compliant Bluetooth device (architectural attack)
 - Allows to decrypt all traffic and inject valid traffic
 - Runs in parallel (multiple links and piconets)

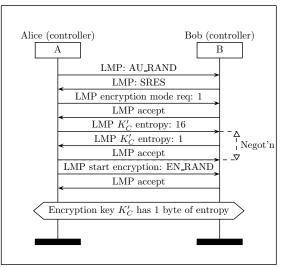

1 Alice and Bob securely pair in absence of Eve

KNOB Attack Stages

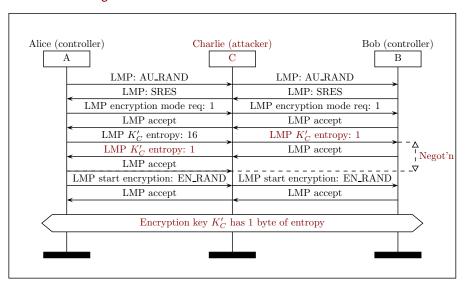

- 1 Alice and Bob securely pair in absence of Eve
- 2 Alice and Bob initiate a secure connection

KNOB Attack Stages

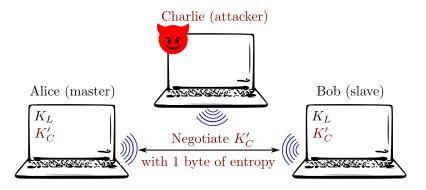
- 1 Alice and Bob securely pair in absence of Eve
- 2 Alice and Bob initiate a secure connection
- 3 Charlie makes the victims negotiate an encryption key with 1 byte of entropy


KNOB Attack Stages

- 1 Alice and Bob securely pair in absence of Eve
- 2 Alice and Bob initiate a secure connection
- 3 Charlie makes the victims negotiate an encryption key with 1 byte of entropy
- 4 Charlie eavesdrop the ciphertext and brute force the key in real time

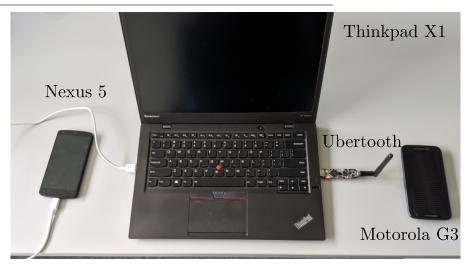

Bluetooth Entropy Negotiation

- Entropy negotiation is neither integrity protected nor encrypted
 - N between 1 and 16



Adversarial Bluetooth Entropy Negotiation

• Charlie sets N=1 (K'_C 's entropy), LMP is neither integrity protected nor encrypted



Brute Forcing the Encryption Key (K'_C) in Real Time

- Alice and Bob use an encryption key (K'_C) with 1 Byte of entropy
 - Charlie brute forces K'_C within 256 candidates (in parallel)
- K'_C space when entropy is 1 byte
 - ► AES-CCM: 0x00 ... 0xff
 - ▶ E₀: (0x00... 0xff) x 0x00e275a0abd218d4cf928b9bbf6cb08f

KNOB Attack Scenario

- Attacker decrypts a file exchanged over an encrypted Bluetooth link
 - Victims: Nexus 5 and Motorola G3
 - Attacker: ThinkPad X1 and Ubertooth (Bluetooth sniffer)

Vulnerable chips and devices (Bluetooth 5.0, 4.2)

Bluetooth chip	Device(s)	Vulnerable?
Bluetooth Version 5.0		
Snapdragon 845	Galaxy S9	\checkmark
Snapdragon 835	Pixel 2, OnePlus 5	\checkmark
Apple/USI 339S00428	MacBookPro 2018	\checkmark
Apple A1865	iPhone X	\checkmark
Bluetooth Version 4.2		
Intel 8265	ThinkPad X1 6th	\checkmark
Intel 7265	ThinkPad X1 3rd	\checkmark
Unknown	Sennheiser PXC 550	\checkmark
Apple/USI 339S00045	iPad Pro 2	\checkmark
BCM43438	RPi 3B, RPi 3B+	\checkmark
BCM43602	iMac MMQA2LL/A	\checkmark

\checkmark = Entropy of the encryption key (K'_C) reduced to 1 Byte

Daniele Antonioli The KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR

Vulnerable chips and devices (Bluetooth 4.1 and below)

Bluetooth chip	Device(s)	Vulnerable?
Bluetooth Version 4.1 BCM4339 (CYW4339) Snapdragon 410	Nexus5, iPhone 6 Motorola G3	\checkmark
Bluetooth Version ≤ 4.0 Snapdragon 800 Intel Centrino 6205 Chicony Unknown Broadcom Unknown Broadcom Unknown Apple W1	LG G2 ThinkPad X230 ThinkPad KT-1255 ThinkPad 41U5008 Anker A7721 AirPods	$ \begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \star \end{array} $

 \checkmark = Entropy of the encryption key (K'_C) reduced to 1 Byte

* = Entropy of the encryption key $(K_C^{\tilde{i}})$ reduced to 7 Byte

Daniele Antonioli

KNOB in Bluetooth core spec v5.0 (page 1650)

"For the encryption algorithm, the key size (N) may vary between 1 and 16 octets (8-128 bits). The size of the encryption key is configurable for two reasons. The first has to do with the many different requirements imposed on cryptographic algorithms in different countries - both with respect to export regulations and official attitudes towards privacy in general. The second reason is to facilitate a future upgrade path for the security without the need of a costly redesign of the algorithms and encryption hardware; increasing the effective key size is the simplest way to combat increased computing power at the opponent side."

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_ id=421043

KNOB Attack Disclosure and Countermeasures

- We did responsible disclosure with CERT and Bluetooth SIG (CVE-2019-9506)
 - KNOB discovery in May 2018, exploitation and report in October 2018
 - Many industries affected, e.g., Intel, Broadcom, Qualcomm, ARM, and Apple
- *Legacy compliant* countermeasures
 - Set 16 bytes of entropy in the Bluetooth firmware
 - Check N from the host (OS) upon connection
 - Security mechanisms on top of the link layer
- Non legacy compliant countermeasures
 - ► Secure entropy negotiation with *K*_L (ECDH shared secret)
 - Get rid of the entropy negotiation protocol

Conclusion

- We propose the Key Negotiation Of Bluetooth (KNOB) attack
 - Reduces the entropy of any encryption key to 1 Byte, and brute forces the key
 - Affects any standard compliant Bluetooth device (architectural attack)
 - Allows to *decrypt all traffic* and *inject valid traffic*
 - Runs in *parallel* (multiple links and piconets)
- We implement and evaluate the KNOB attack
 - 14 vulnerable chips (Intel, Broadcom, Apple, and Qualcomm)
 - 21 vulnerable devices
- Provide effective legacy and non legacy compliant countermeasures
- For more information visit: https://knobattack.com

Conclusion

- We propose the Key Negotiation Of Bluetooth (KNOB) attack
 - Reduces the entropy of any encryption key to 1 Byte, and brute forces the key
 - Affects any standard compliant Bluetooth device (architectural attack)
 - Allows to *decrypt all traffic* and *inject valid traffic*
 - Runs in *parallel* (multiple links and piconets)
- We implement and evaluate the KNOB attack
 - 14 vulnerable chips (Intel, Broadcom, Apple, and Qualcomm)
 - 21 vulnerable devices
- Provide effective legacy and non legacy compliant countermeasures
- For more information visit: https://knobattack.com

Thanks for your time! Questions?