

CANS 17 @ Hong Kong Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN

DANIELE ANTONIOLI (SUTD), S. SIBY (EPFL), N. O. TIPPENHAUER (SUTD)

- Some PHY features theoretically disadvantage an eavesdropper
 - Eg: reduce eavesdropping range
 - Few practical evaluations of those claims
 - Typically not focusing on a real protocol
- 802.11n/ac WLAN amendments
 - Use of MIMO and beamforming
- Is eavesdropping affected by recent PHY features?
 - ► If yes, we get extra resilience for free
 - Even from COTS devices

- SNR: Signal-to-Noise-Ratio
 - Power of the useful signal divided by the noise power at the receiver
 - $10 \log_{10} \text{SNR} = \text{SNR}_{\text{dB}}$
- BER: Bit-Error-Rate
 - Probability of erroneously decoding 1-bit at the receiver
 - Not exact quantity (MCS, fading model)
 - ► 10⁻⁶ is considered a reasonable BER value
- PER: Packet-Error-Rate
 - Computed as: $PER = 1 (1 BER)^N$
 - N is the average packet size in bits

• 802.11n/ac vs. 802.11b

- Passive eavesdropper (Eve)
- Downlink channel (from Alice to Bob)
- NLOS environment (exploit multipath)
- 802.11b as a baseline: no MIMO

• Predictions

- Eve's SNR disadvantage in b vs. n/ac
- Eve's PER disadvantage compared to Bob in n/ac

• Experimental evaluation

- With COTS devices in an indoor environment
- Measure PER and SNR
- Compare results with predictions

- 802.11b (SISO)
 - Alice uses 1 antenna
 - No disadvantages for Eve
 - Eve success depends on: *d_{AE}*

- 802.11n/ac (MIMO)
 - Alice uses L antennas
 - Transmit-beamforming towards Bob disadvantages Eve
 - Eve success depends on: *d_{AE}*, *d_{BE}*, and *L*

• Eve is a passive eavesdropper

- Eavesdrop the downlink
- Outside the main lobe (if Alice uses beamforming)
- Equipotent to Bob
 - COTS devices
 - Same number of antennas
- Eavesdrops in monitor mode
 - No retransmissions

- Quantify the disadvantages of Eve
 - In 802.11n/ac (MIMO) compared to 802.11b (SISO)
- Eve's SNR disadvantage
 - Upper bound from BER formula (Rayleigh fading)
 - Lower bound from transmit-beamforming gain
- Expected BER and PER of Eve vs. Bob
 - Varying their distances to Alice
 - Using 802.11n/ac different path loss models

Passive Eavesdropping 802.11n/ac

8

- 802.11n/ac (MISO)
 - Alice uses L antennas
 - Transmit-beamforming towards Bob disadvantages Eve
 - Eve success depends on: d_{AE}, d_{BE}, and L

Number of transmitting antennas (L) is key:

$$\lambda = \sqrt{\frac{\text{SNR}}{2 + \text{SNR}}}$$
(1)
BER_{SISO} = $\frac{1}{2} (1 - \lambda)$ (2)

$$BER_{MISO} = \left(\frac{1-\lambda}{2}\right)^{L} \cdot \sum_{i=0}^{L-1} \binom{L+i-1}{i} \left(\frac{1+\lambda}{2}\right)^{i}$$
(3)

- If L = 4 and BER = 10^{-6} , then
 - $SNR_{SISO} = 57$ (no diversity)
 - SNR_{MISO} = 16 (diversity order = 4)
 - Eve's SNR disadvantage in 802.11n/ac is 41 dB (at most)

The MISO transmission gain from Alice to Bob is (using CCD):

$$\|g\|^2 = 10 \log_{10}(L) \ dB \tag{4}$$

- Eve is not benefiting from g
- If L = 4, then
 - Eve's SNR disadvantage in 802.11n/ac is 6 dB (at least)

The MISO transmission gain from Alice to Bob is (using CCD):

$$\|g\|^2 = 10 \log_{10}(L) \ dB \tag{4}$$

- Eve is not benefiting from g
- If L = 4, then
 - Eve's SNR disadvantage in 802.11n/ac is 6 dB (at least)
- Eve's SNR disadvantage in 802.11n/ac form 6 to 41 dB

- From: Next Gen. Wireless LAN: 802.11n and 802.11ac
 - ► *d*_{BP} is the breakpoint distance
 - σ_{SF} is the shadowing std dev (log-normal)
 - s_{PL} LOS and NLOS path loss slopes
- Model B: Residential (intra-room)
 - ► *d_{BP}* = 5 m
 - σ_{SF} = 3, 4 dB
 - $s_{PL} = 2, 3.5$
- Model D: Office (large conference room)
 - ▶ *d*_{BP} = 10 m
 - σ_{SF} = 3, 5 dB
 - $s_{PL} = 2, 3.5$

Model B (Residential) Expected BER

BER of Eve, Bob(L=2) and Bob(L=4) in 802.11n (BPSK)

Model B (Residential) Expected PER

PER of Eve, Bob(L=2) and Bob(L=4) in 802.11n (BPSK)

Model B (Residential) Expected PER

PER of Eve, Bob(L=2) and Bob(L=4) in 802.11n (BPSK)

Experimental Indoor Office Layout

- Alice, Bob, and Eve locations
 - $d_{AB} = 2 \text{ m}$
 - $\vec{d}_{AE} = [2.5, 5.0, \dots, 20] \text{ m} (8 \text{ distances})$
 - ► △*d*_{AE} = 2.5 m
 - Constant angle and elevation
 - NLOS (exploit multipath)

• COTS devices

- Alice: Linksys WRT3200ACM, 4x4, OpenWrt
- ▶ 802.11n: Bob and Eve use a TL-WN722N USB dongle
- ▶ 802.11ac: Bob uses an USB-AC68, Eve uses a MacBook Pro
- Physical layer setup
 - $P_A = 23$ dBm (Alice's tx power)
 - $N_0 = -91$ dBm (mean noise power at receiver)
 - $Ch_{b/n/ac} = 11, 11, 36$

- UDP traffic from Alice to Bob
 - Using iperf
 - 30 repetitions per distance
- SNR
 - RSSI and noise floor from PHY radiotap headers
- PER
 - From incorrect UDP checksums
 - Over the total number of packet sent
 - Underestimate PER (no FCS)

Eve's Measured PER vs. Model D (Office)

• Eve's PER is increasing with 802.11b/n/ac

Eve's Measured SNR

• Eve's SNR in 802.11n/ac is smaller than in 802.11b

Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac

- Predicted 802.11n/ac disadvantages for Eve
 - SNR is bounded by 6-41 dB
 - PER increases to 98% when $d_{AE} > 20$ m
 - Eve has to be 129.5 m closer to get same performance as Bob
- Experimental results about Eve
 - PER increases significantly when d_{AE} > 15 m
 - PER is 20% higher in 802.11n than in 802.11b
 - PER is 30% higher in 802.11ac than in 802.11b
- We conclude that
 - ► 802.11n/ac PHY features disadvantage an eavesdropper

Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac

- Predicted 802.11n/ac disadvantages for Eve
 - SNR is bounded by 6-41 dB
 - PER increases to 98% when $d_{AE} > 20$ m
 - Eve has to be 129.5 m closer to get same performance as Bob
- Experimental results about Eve
 - PER increases significantly when d_{AE} > 15 m
 - PER is 20% higher in 802.11n than in 802.11b
 - PER is 30% higher in 802.11ac than in 802.11b
- We conclude that
 - ► 802.11n/ac PHY features disadvantage an eavesdropper

Thanks for your time! Questions?